Korean J Physiol Pharmacol.  2023 Mar;27(2):143-155. 10.4196/kjpp.2023.27.2.143.

Resveratrol pretreatment alleviates NLRP3 inflammasomemediated cardiomyocyte pyroptosis by targeting TLR4/MyD88/ NF-κB signaling cascade in coronary microembolization-induced myocardial damage

Affiliations
  • 1Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio- cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning 530021, China
  • 2Department of Cardiology, Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou 545007, China

Abstract

Percutaneous coronary intervention and acute coronary syndrome are both closely tied to the frequently occurring complication of coronary microembolization (CME). Resveratrol (RES) has been shown to have a substantial cardioprotective influence in a variety of cardiac diseases, though its function and potential mechanistic involvement in CME are still unclear. The forty Sprague–Dawley rats were divided into four groups randomly: CME, CME + RES (25 mg/kg), CME + RES (50 mg/kg), and sham (10 rats per group). The CME model was developed. Echocardiography, levels of myocardial injury markers in the serum, and histopathology of the myocardium were used to assess the function of the cardiac muscle. For the detection of the signaling of TLR4/MyD88/NF-κB along with the expression of pyroptosisrelated molecules, ELISA, qRT-PCR, immunofluorescence, and Western blotting were used, among other techniques. The findings revealed that myocardial injury and pyroptosis occurred in the myocardium following CME, with a decreased function of cardiac, increased levels of serum myocardial injury markers, increased area of microinfarct, as well as a rise in the expression levels of pyroptosis-related molecules. In addition to this, pretreatment with resveratrol reduced the severity of myocardial injury after CME by improving cardiac dysfunction, decreasing serum myocardial injury markers, decreasing microinfarct area, and decreasing cardiomyocyte pyroptosis, primarily by blocking the signaling of TLR4/MyD88/NF-κB and also reducing the NLRP3 inflammasome activation. Resveratrol may be able to alleviate CME-induced myocardial pyroptosis and cardiac dysfunction by impeding the activation of NLRP3 inflammasome and the signaling pathway of TLR4/MyD88/NF-κB.

Keyword

Coronary microembolization; NLRP3; Pyroptosis; Resveratrol; TLR4/MyD88/NF-κB

Figure

  • Fig. 1 Cardiac function-based indices of rats were measured by echocardiography. (A) Representative M-mode images of each group. (B–E) LVEF, LVFS, LVEDd, and LVESd in each group (n = 8 per group). Low-dose: CME + low-dose RES (25 mg/kg), High-dose: CME + high-dose RES (50 mg/kg). Data were presented as the mean ± SD. LVEF, left ventricular ejection fraction; LVFS, left ventricular fractional shortening; LVEDd, left ventricular end-diastolic diameter; LVESd, left ventricular end-systolic diameter; CME, coronary microembolization; RES, resveratrol. *p < 0.05, compared with Sham group; #p < 0.05, compared with CME group; +p < 0.05, compared with Low-dose group.

  • Fig. 2 Resveratrol reduced the serum levels of myocardial injury markers. (A) cTnI levels in serum. (B) CK-MB levels in serum. (C) LDH levels in serum (n = 8 per group). Low-dose: CME + low-dose RES (25 mg/kg), High-dose: CME + high-dose RES (50 mg/kg). Data were presented as the mean ± SD. cTnI, cardiac troponin I; CK-MB, creatine kinase myocardial band isoenzyme; LDH, lactate dehydrogenase; CME, coronary microembolization; RES, resveratrol. *p < 0.05, compared with Sham group; #p < 0.05, compared with CME group; +p < 0.05, compared with Low-dose group.

  • Fig. 3 Histopathological examination of myocardial tissues through H&E and HBFP staining. (A) Representative H&E-stained myocardial sections from each group (×200 magnification; bar = 100 μm). The arrows indicate the microspheres. (B) Representative images of HBFP staining (×200 magnification; bar = 100 μm). The arrows indicate the microinfarct area. (C) The percentage of micro-infarct area in each group (n = 8 per group). Low-dose: CME + low-dose RES (25 mg/kg), High-dose: CME + high-dose RES (50 mg/kg). Data were presented as the mean ± SD. CME, coronary microembolization; RES, resveratrol. *p < 0.05, compared with Sham group; #p < 0.05, compared with CME group; +p < 0.05, compared with Low-dose group.

  • Fig. 4 Resveratrol pretreatment attenuated CME-induced mitochondrial injury. (A) Myocardial mitochondrial morphology observed by transmission electron microscopy (magnification ×60,000, scale bar = 500 nm). The black arrows indicate the typical vacuolated degeneration and enlarged mitochondria. (B) ATP concentrations of each group (n = 8 per group). Low-dose: CME + low-dose RES (25 mg/kg), High-dose: CME + high-dose RES (50 mg/kg). Data were presented as the mean ± SD. CME, coronary microembolization; RES, resveratrol. *p < 0.05, compared with Sham group; #p < 0.05, compared with CME group; +p < 0.05, compared with Low-dose group.

  • Fig. 5 Resveratrol attenuated CME-induced pyroptosis of cardiomyocytes. (A, B) Serum levels of IL-1β and IL-18 in rats of each group (n = 8 per group). (C) mRNA levels of NLRP3 in each group (n = 8 per group). (D) Representative Western blot bands of NLRP3, ASC, caspase-1 p20, GSDMD-FL, GSDMD-N, IL-1β, and IL-18. (E–J) The relative expression levels of these proteins in each group. GAPDH was used for protein expression normalization (n = 3 per group). Low-dose: CME + low-dose RES (25 mg/kg), High-dose: CME + high-dose RES (50 mg/kg). Data were presented as the mean ± SD. IL, interleukin; NLRP3, nod-like receptor protein 3; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; CME, coronary microembolization; RES, resveratrol. *p < 0.05, compared with Sham group; #p < 0.05, compared with CME group; +p < 0.05, compared with Low-dose group.

  • Fig. 6 Immunofluorescence staining of NLRP3 and caspase-1 p20 in cardiac tissues. (A) Representative NLRP3 immunofluorescence staining images of each group. (B) Representative caspase-1 p20 immunofluorescence staining images of each group (magnification ×400, scale bar = 100 μm). Low-dose: CME + low-dose RES (25 mg/kg), High-dose: CME + high-dose RES (50 mg/kg). NLRP3, nod-like receptor protein 3; CME, coronary microembolization; RES, resveratrol.

  • Fig. 7 Resveratrol inhibited pyroptosis via the pathway of TLR4/MyD88/NF-κB. (A) Representative Western blot bands of TLR4, MyD88, p-NF-κB p65. (B) The mRNA levels of TLR4 in each group (n = 8 per group). (C–E) Relative protein expression levels in each group. GAPDH was used for protein expression normalization (n = 3 per group). (F) Representative TLR4 immunofluorescence staining in each group (magnification ×400, scale bar = 100 μm). Low-dose: CME + low-dose RES (25 mg/kg), High-dose: CME + high-dose RES (50 mg/kg). Data were presented as the mean ± SD. TLR4, toll-like receptor 4; MyD88, myeloid differentiation factor 88; NF-κB, nuclear factor-kappa B; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; CME, coronary microembolization; RES, resveratrol. *p < 0.05, compared with Sham group; #p < 0.05, compared with CME group; +p < 0.05, compared with Low-dose group.


Reference

1. Heusch G, Kleinbongard P, Böse D, Levkau B, Haude M, Schulz R, Erbel R. 2009; Coronary microembolization: from bedside to bench and back to bedside. Circulation. 120:1822–1836. DOI: 10.1161/CIRCULATIONAHA.109.888784. PMID: 19884481. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=70449514842&origin=inward.
2. Bahrmann P, Werner GS, Heusch G, Ferrari M, Poerner TC, Voss A, Figulla HR. 2007; Detection of coronary microembolization by Doppler ultrasound in patients with stable angina pectoris undergoing elective percutaneous coronary interventions. Circulation. 115:600–608. DOI: 10.1161/CIRCULATIONAHA.106.660779. PMID: 17261655. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33846864001&origin=inward.
Article
3. Su Q, Li L, Zhao J, Sun Y, Yang H. 2017; MiRNA expression profile of the myocardial tissue of pigs with coronary microembolization. Cell Physiol Biochem. 43:1012–1024. DOI: 10.1159/000481699. PMID: 28968594. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85030721654&origin=inward.
Article
4. Su Q, Li L, Wang J, Zhou Y, Liu Y. 2015; Mechanism of programmed cell death factor 4/nuclear factor-κB signaling pathway in porcine coronary micro-embolization-induced cardiac dysfunction. Exp Biol Med (Maywood). 240:1426–1433. DOI: 10.1177/1535370215573400. PMID: 25769315. PMCID: PMC4935293. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84944102029&origin=inward.
Article
5. Thielmann M, Dörge H, Martin C, Belosjorow S, Schwanke U, van De Sand A, Konietzka I, Büchert A, Krüger A, Schulz R, Heusch G. 2002; Myocardial dysfunction with coronary microembolization: signal transduction through a sequence of nitric oxide, tumor necrosis factor-alpha, and sphingosine. Circ Res. 90:807–813. DOI: 10.1161/01.RES.0000014451.75415.36. PMID: 11964374. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0037134405&origin=inward.
6. Heusch G. 2016; The coronary circulation as a target of cardioprotection. Circ Res. 118:1643–1658. DOI: 10.1161/CIRCRESAHA.116.308640. PMID: 27174955. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84968764909&origin=inward.
Article
7. Heusch G, Gersh BJ. 2017; The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge. Eur Heart J. 38:774–784. DOI: 10.1093/eurheartj/ehw224. PMID: 27354052. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85018173958&origin=inward.
Article
8. Samali A, Zhivotovsky B, Jones D, Nagata S, Orrenius S. 1999; Apoptosis: cell death defined by caspase activation. Cell Death Differ. 6:495–496. DOI: 10.1038/sj.cdd.4400520. PMID: 10381647. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0033047234&origin=inward.
Article
9. Bergsbaken T, Fink SL, Cookson BT. 2009; Pyroptosis: host cell death and inflammation. Nat Rev Microbiol. 7:99–109. DOI: 10.1038/nrmicro2070. PMID: 19148178. PMCID: PMC2910423. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=58449083290&origin=inward.
Article
10. Lei Q, Yi T, Chen C. 2018; NF-κB-gasdermin D (GSDMD) axis couples oxidative stress and NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome-mediated cardiomyocyte pyroptosis following myocardial infarction. Med Sci Monit. 24:6044–6052. DOI: 10.12659/MSM.908529. PMID: 30161099. PMCID: PMC6128186. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85053683163&origin=inward.
Article
11. Zeng C, Duan F, Hu J, Luo B, Huang B, Lou X, Sun X, Li H, Zhang X, Yin S, Tan H. 2020; NLRP3 inflammasome-mediated pyroptosis contributes to the pathogenesis of non-ischemic dilated cardiomyopathy. Redox Biol. 34:101523. DOI: 10.1016/j.redox.2020.101523. PMID: 32273259. PMCID: PMC7327979. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85082654900&origin=inward.
Article
12. Zhaolin Z, Guohua L, Shiyuan W, Zuo W. 2019; Role of pyroptosis in cardiovascular disease. Cell Prolif. 52:e12563. DOI: 10.1111/cpr.12563. PMID: 30525268. PMCID: PMC6496801. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85058158091&origin=inward.
Article
13. Lundberg AM, Ketelhuth DF, Johansson ME, Gerdes N, Liu S, Yamamoto M, Akira S, Hansson GK. 2013; Toll-like receptor 3 and 4 signalling through the TRIF and TRAM adaptors in haematopoietic cells promotes atherosclerosis. Cardiovasc Res. 99:364–373. DOI: 10.1093/cvr/cvt033. PMID: 23417039. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84878805816&origin=inward.
Article
14. Lu M, Tang F, Zhang J, Luan A, Mei M, Xu C, Zhang S, Wang H, Maslov LN. 2015; Astragaloside IV attenuates injury caused by myocardial ischemia/reperfusion in rats via regulation of toll-like receptor 4/nuclear factor-κB signaling pathway. Phytother Res. 29:599–606. DOI: 10.1002/ptr.5297. PMID: 25604645. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84926482662&origin=inward.
Article
15. Soraya H, Clanachan AS, Rameshrad M, Maleki-Dizaji N, Ghazi-Khansari M, Garjani A. 2014; Chronic treatment with metformin suppresses toll-like receptor 4 signaling and attenuates left ventricular dysfunction following myocardial infarction. Eur J Pharmacol. 737:77–84. DOI: 10.1016/j.ejphar.2014.05.003. PMID: 24842192. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84901733607&origin=inward.
Article
16. Chimenti C, Verardo R, Scopelliti F, Grande C, Petrosillo N, Piselli P, De Paulis R, Frustaci A. 2017; Myocardial expression of Toll-like receptor 4 predicts the response to immunosuppressive therapy in patients with virus-negative chronic inflammatory cardiomyopathy. Eur J Heart Fail. 19:915–925. DOI: 10.1002/ejhf.796. PMID: 28370906. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85017335618&origin=inward.
Article
17. Ma SR, Xie XW. 2017; NLRC5 deficiency promotes myocardial damage induced by high fat diet in mice through activating TLR4/NF-κB. Biomed Pharmacother. 91:755–766. DOI: 10.1016/j.biopha.2017.03.062. PMID: 28499247. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85019027509&origin=inward.
Article
18. Zhang J, Zhang J, Yu P, Chen M, Peng Q, Wang Z, Dong N. 2017; Remote ischaemic preconditioning and sevoflurane postconditioning synergistically protect rats from myocardial injury induced by ischemia and reperfusion partly via inhibition TLR4/MyD88/NF-κB signaling pathway. Cell Physiol Biochem. 41:22–32. DOI: 10.1159/000455815. PMID: 28135708. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85026460153&origin=inward.
Article
19. Dörge H, Schulz R, Belosjorow S, Post H, van de Sand A, Konietzka I, Frede S, Hartung T, Vinten-Johansen J, Youker KA, Entman ML, Erbel R, Heusch G. 2002; Coronary microembolization: the role of TNF-alpha in contractile dysfunction. J Mol Cell Cardiol. 34:51–62. DOI: 10.1006/jmcc.2001.1489. PMID: 11812164. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0036172194&origin=inward.
20. Su Q, Li L, Sun Y, Yang H, Ye Z, Zhao J. 2018; Effects of the TLR4/Myd88/NF-κB signaling pathway on NLRP3 inflammasome in coronary microembolization-induced myocardial injury. Cell Physiol Biochem. 47:1497–1508. DOI: 10.1159/000490866. PMID: 29940584. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85050792078&origin=inward.
Article
21. Wang XT, Lu YX, Sun YH, He WK, Liang JB, Li L. 2017; TAK-242 protects against apoptosis in coronary microembolization-induced myocardial injury in rats by suppressing TLR4/NF-κB signaling pathway. Cell Physiol Biochem. 41:1675–1683. DOI: 10.1159/000471248. PMID: 28359050. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85016550381&origin=inward.
Article
22. Wiciński M, Socha M, Walczak M, Wódkiewicz E, Malinowski B, Rewerski S, Górski K, Pawlak-Osińska K. 2018; Beneficial effects of resveratrol administration-focus on potential biochemical mechanisms in cardiovascular conditions. Nutrients. 10:1813. DOI: 10.3390/nu10111813. PMID: 30469326. PMCID: PMC6266814. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85057100327&origin=inward.
Article
23. Ungvari Z, Bagi Z, Feher A, Recchia FA, Sonntag WE, Pearson K, de Cabo R, Csiszar A. 2010; Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2. Am J Physiol Heart Circ Physiol. 299:H18–H24. DOI: 10.1152/ajpheart.00260.2010. PMID: 20418481. PMCID: PMC2904129. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77953741269&origin=inward.
Article
24. Yang Y, Wang X, Zhang L, An H, Zao Z. 2011; Inhibitory effects of resveratrol on platelet activation induced by thromboxane A2 receptor agonist in human platelets. Am J Chin Med. 39:145–159. DOI: 10.1142/S0192415X11008713. PMID: 21213405. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=78751525495&origin=inward.
Article
25. Abbas AM. 2016; Cardioprotective effect of resveratrol analogue isorhapontigenin versus omega-3 fatty acids in isoproterenol-induced myocardial infarction in rats. J Physiol Biochem. 72:469–484. DOI: 10.1007/s13105-016-0494-4. PMID: 27193109. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84969760158&origin=inward.
Article
26. Xu K, Liu XF, Ke ZQ, Yao Q, Guo S, Liu C. 2018; Resveratrol modulates apoptosis and autophagy induced by high glucose and palmitate in cardiac cells. Cell Physiol Biochem. 46:2031–2040. DOI: 10.1159/000489442. PMID: 29723857. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85046474193&origin=inward.
Article
27. Yang L, Zhang Y, Zhu M, Zhang Q, Wang X, Wang Y, Zhang J, Li J, Yang L, Liu J, Liu F, Yang Y, Kang L, Shen Y, Qi Z. 2016; Resveratrol attenuates myocardial ischemia/reperfusion injury through up-regulation of vascular endothelial growth factor B. Free Radic Biol Med. 101:1–9. DOI: 10.1016/j.freeradbiomed.2016.09.016. PMID: 27667182. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84989824817&origin=inward.
Article
28. Li J, Xie C, Zhuang J, Li H, Yao Y, Shao C, Wang H. 2015; Resveratrol attenuates inflammation in the rat heart subjected to ischemia-reperfusion: role of the TLR4/NF-κB signaling pathway. Mol Med Rep. 11:1120–1126. DOI: 10.3892/mmr.2014.2955. PMID: 25405531. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84916239900&origin=inward.
Article
29. Feng H, Mou SQ, Li WJ, Zhang N, Zhou ZY, Ding W, Bian ZY, Liao HH. 2020; Resveratrol inhibits ischemia-induced myocardial senescence signals and NLRP3 inflammasome activation. Oxid Med Cell Longev. 2020:2647807. DOI: 10.1155/2020/2647807. PMID: 32908628. PMCID: PMC7468658. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85090820609&origin=inward.
Article
30. Hong SW, Jung KH, Zheng HM, Lee HS, Suh JK, Park IS, Lee DH, Hong SS. 2010; The protective effect of resveratrol on dimethylnitrosamine-induced liver fibrosis in rats. Arch Pharm Res. 33:601–609. DOI: 10.1007/s12272-010-0415-y. PMID: 20422370. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77954544210&origin=inward.
Article
31. Mao Q, Liang X, Wu Y, Lu Y. 2019; Resveratrol attenuates cardiomyocyte apoptosis in rats induced by coronary microembolization through SIRT1-mediated deacetylation of p53. J Cardiovasc Pharmacol Ther. 24:551–558. DOI: 10.1177/1074248419845916. PMID: 31046448. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85065450832&origin=inward.
Article
32. Su Q, Lv X, Sun Y, Ye Z, Kong B, Qin Z. 2018; Role of TLR4/MyD88/NF-κB signaling pathway in coronary microembolization-induced myocardial injury prevented and treated with nicorandil. Biomed Pharmacother. 106:776–784. DOI: 10.1016/j.biopha.2018.07.014. PMID: 29990871. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85049466723&origin=inward.
Article
33. Dörge H, Neumann T, Behrends M, Skyschally A, Schulz R, Kasper C, Erbel R, Heusch G. 2000; Perfusion-contraction mismatch with coronary microvascular obstruction: role of inflammation. Am J Physiol Heart Circ Physiol. 279:H2587–H2592. DOI: 10.1152/ajpheart.2000.279.6.H2587. PMID: 11087208. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0034530272&origin=inward.
Article
34. Zhang X, Du Q, Yang Y, Wang J, Dou S, Liu C, Duan J. 2017; The protective effect of Luteolin on myocardial ischemia/reperfusion (I/R) injury through TLR4/NF-κB/NLRP3 inflammasome pathway. Biomed Pharmacother. 91:1042–1052. DOI: 10.1016/j.biopha.2017.05.033. PMID: 28525945. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85019256033&origin=inward.
Article
35. Nakata R, Takahashi S, Inoue H. 2012; Recent advances in the study on resveratrol. Biol Pharm Bull. 35:273–279. DOI: 10.1248/bpb.35.273. PMID: 22382311. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84857831235&origin=inward.
Article
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr