Korean J Physiol Pharmacol.  2022 Nov;26(6):427-438. 10.4196/kjpp.2022.26.6.427.

The role of discoid domain receptor 1 on renal tubular epithelial pyroptosis in diabetic nephropathy

Affiliations
  • 1Department of Pharmacy, Lu'an Hospital Affiliated to Anhui Medical University, Lu’an People’s Hospital, Lu'an, Anhui 237005, China

Abstract

Pyroptosis, a form of cell death associated with inflammation, is known to be involved in diabetic nephropathy (DN), and discoid domain receptor 1 (DDR1), an inflammatory regulatory protein, is reported to be associated with diabetes. However, the mechanism underlying DDR1 regulation and pyroptosis in DN remains unknown. We aimed to investigate the effect of DDR1 on renal tubular epithelial cell pyroptosis and the mechanism underlying DN. In this study, we used high glucose (HG)-treated HK-2 cells and rats with a single intraperitoneal injection of streptozotocin as DN models. Subsequently, the expression of pyroptosis-related proteins (cleaved caspase-1, GSDMD-N, Interleukin-1β [IL-1β], and interleukin-18 [IL-18]), DDR1, phosphorylated NF-κB (p-NF-κB), and NLR family pyrin domain-containing 3 (NLRP3) inflammasomes were determined through Western blotting. IL-1β and IL-18 levels were determined using ELISA. The rate of pyroptosis was assessed by propidium iodide (PI) staining. The results revealed upregulated expression of pyroptosisrelated proteins and increased concentration of IL-1β and IL-18, accompanied by DDR1, p-NF-κB, and NLRP3 upregulation in DN rat kidney tissues and HG-treated HK-2 cells. Moreover, DDR1 knockdown in the background of HG treatment resulted in inhibited expression of pyroptosis-related proteins and attenuation of IL-1β and IL-18 production and PI-positive cell frequency via the NF-κB/NLRP3 pathway in HK-2 cells. However, NLRP3 overexpression reversed the effect of DDR1 knockdown on pyroptosis. In conclusion, we demonstrated that DDR1 may be associated with pyroptosis, and DDR1 knockdown inhibited HG-induced renal tubular epithelial cell pyroptosis. The NF-κB/NLRP3 pathway is probably involved in the underlying mechanism of these findings.

Keyword

Diabetic nephropathy; Discoid domain receptor 1; NLR family pyrin domain-containing 3; Nuclear factor kappa B; Pyroptosis

Figure

  • Fig. 1 Changes in the kidney function and morphology in diabetic rats. A rat model wherein streptozotocin (STZ) was used to induce diabetic nephropathy (DN). (A) H&E staining to observe the morphological characteristics of the kidney (scale bar 50 μm, ×400; scale bar 200 μm, ×100) magnifications, (B) Albumin/creatinine ratio. (C) Plasma cystatin-C levels. (D) Glomerular volume. (E) Mesangial area. (F) Tuft area. Data are presented as mean ± SEM from 6 rats. Compared to control, **p < 0.01.

  • Fig. 2 In vivo and in vitro expression of pyroptosis-related proteins. (A) Bands corresponding to the expression of pyroptosis-related proteins (caspase-1 p45, cleaved caspase-1, interleukin [IL]-1β, IL-18, gasdermin D [GSDMD], and GSDMD-N) in the kidneys of diabetic nephropathy (DN) rats. (B) Quantification of the bands observed in (A). (C) Concentration of IL-1β in rat plasma. (D) Concentration of IL-18 in rat plasma. (E) Bands corresponding to the expression of pyroptosis-related proteins (caspase-1 p45, cleaved caspase-1, IL-1β, IL-18, GSDMD, and GSDMD-N) in high glucose (HG)-treated HK-2 cells. (F) Quantification of the bands observed in (E). (G) Concentration of IL-1β in HK-2 cell supernatant. (H) Concentration of IL-18 in HK-2 cell supernatant. Data are presented as mean ± SEM from 6 rats and 3 replicated cell experiments. Compared to control, *p < 0.05, **p < 0.01.

  • Fig. 3 In vivo and in vitro expression of discoid domain receptor 1 (DDR1). (A) DDR1 expression in the kidneys of diabetic nephropathy (DN) rats. (B) DDR1 expression in high glucose (HG)-treated HK-2 cells. Data are presented as mean protein in the kidneys of DN rats and HG-treated HK-2 cells. Data are presented as mean ± SEM from 6 rats and 3 replicated cell experiments. Compared to control, **p < 0.01.

  • Fig. 4 Effect of discoid domain receptor 1 (DDR1) knockdown on HK-2 cell pyroptosis. (A) Bands corresponding to the expression of DDR1 in the background of transfection with siDDR1. (B) Quantification of the band observed in (B). (C) Propidium iodide (PI) staining was used to analyze HK-2 cell death (scale bar: 200 μm). (D) Percentage HK-2 cell pyroptosis. (E) Bands corresponding to the expression of pyroptosis-related proteins (caspase-1 p45, cleaved caspase-1, interleukin [IL]-1β, IL-18, gasdermin D [GSDMD], and GSDMD-N). (F) Quantification of the bands observed in (E). (G) The concentration of IL-1β in HK-2 cell supernatant. (H) The concentration of IL-18 in HK-2 cell supernatant. Data are presented as mean ± SEM from 3 replicated cell experiments. Compared to high glucose (HG), *p < 0.05, **p < 0.01.

  • Fig. 5 Discoid domain receptor 1 (DDR1) knockdown resulted in the downregulation of the nuclear transcription factor-κB (NF-κB)/NLR family pyrin domain-containing 3 (NLRP3) pathway intermediaries at the protein level. (A) Bands corresponding to the expression of phosphorylated NF-κB (p-NF-κB) and NF-κB in the kidneys of DN rats. (B) Bands corresponding to the expression of NLRP3 in the kidneys of diabetic nephropathy (DN) rats. (C) Bands corresponding to the expression of p-NF-κB and NF-κB in HK-2 cells. (D) Bands corresponding to the expression of NLRP3 in HK-2 cells. Data are presented as mean ± SEM from 6 rats and 3 replicated cell experiments. Compared to control, **p < 0.01. Compared to high glucose (HG), #p < 0.05, ##p < 0.01.

  • Fig. 6 NLR family pyrin domain-containing 3 (NLRP3) reversed the discoid domain receptor 1 (DDR1) knockdown‒mediated downregulation of the nuclear transcription factor-κB (NF-κB)/NLRP3 pathway intermediaries at the transcript level (assessed using RT-qPCR). Transcript-level expression of (A) NLRP3, (B) NF-κB, (C) caspase-1, (D) gasdermin D (GSDMD), (E) interleukin (IL)-1β, (F) IL-18. Data are presented as mean ± SEM from 3 replicated cell experiments. Compared to control **p < 0.01. Compared to high glucose (HG), ##p < 0.01. Compared to siDDR1, &&p < 0.01.


Cited by  1 articles

Experimental model and novel therapeutic targets for non-alcoholic fatty liver disease development
Yujin Jin, Kyung-Sun Heo
Korean J Physiol Pharmacol. 2023;27(4):299-310.    doi: 10.4196/kjpp.2023.27.4.299.


Reference

1. Papadopoulou-Marketou N, Paschou SA, Marketos N, Adamidi S, Adamidis S, Kanaka-Gantenbein C. 2018; Diabetic nephropathy in type 1 diabetes. Minerva Med. 109:218–228. DOI: 10.23736/S0026-4806.17.05496-9. PMID: 29205998. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85048813564&origin=inward.
Article
2. Pérez-Morales RE, Del Pino MD, Valdivielso JM, Ortiz A, Mora-Fernández C, Navarro-González JF. 2019; Inflammation in diabetic kidney disease. Nephron. 143:12–16. DOI: 10.1159/000493278. PMID: 30273931. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85054589616&origin=inward.
Article
3. Wu L, Liu C, Chang DY, Zhan R, Sun J, Cui SH, Eddy S, Nair V, Tanner E, Brosius FC, Looker HC, Nelson RG, Kretzler M, Wang JC, Xu M, Ju W, Zhao MH, Chen M, Zheng L. 2021; Annexin A1 alleviates kidney injury by promoting the resolution of inflammation in diabetic nephropathy. Kidney Int. 100:107–121. Erratum in: Kidney Int. 2021;100:1349-1350. DOI: 10.1016/j.kint.2021.02.025. PMID: 33675846. PMCID: PMC8893600. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85104313122&origin=inward.
Article
4. An X, Zhang Y, Cao Y, Chen J, Qin H, Yang L. 2020; Punicalagin protects diabetic nephropathy by inhibiting pyroptosis based on TXNIP/NLRP3 pathway. Nutrients. 12:1516. DOI: 10.3390/nu12051516. PMID: 32456088. PMCID: PMC7284711. PMID: bc435bbd1d34432b88658dab2e8ee2f6. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85085209979&origin=inward.
Article
5. Han J, Zuo Z, Shi X, Zhang Y, Peng Z, Xing Y, Pang X. 2021; Hirudin ameliorates diabetic nephropathy by inhibiting Gsdmd-mediated pyroptosis. Cell Biol Toxicol. doi: 10.1007/s10565-021-09622-z. [Epub ahead of print]. DOI: 10.1007/s10565-021-09622-z. PMID: 34212273. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85109299858&origin=inward.
Article
6. Zhaolin Z, Guohua L, Shiyuan W, Zuo W. 2019; Role of pyroptosis in cardiovascular disease. Cell Prolif. 52:e12563. DOI: 10.1111/cpr.12563. PMID: 30525268. PMCID: PMC6496801. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85058158091&origin=inward.
Article
7. Wu X, Zhang H, Qi W, Zhang Y, Li J, Li Z, Lin Y, Bai X, Liu X, Chen X, Yang H, Xu C, Zhang Y, Yang B. 2018; Nicotine promotes atherosclerosis via ROS-NLRP3-mediated endothelial cell pyroptosis. Cell Death Dis. 9:171. DOI: 10.1038/s41419-017-0257-3. PMID: 29416034. PMCID: PMC5833729. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85041693664&origin=inward.
Article
8. Burdette BE, Esparza AN, Zhu H, Wang S. 2021; Gasdermin D in pyroptosis. Acta Pharm Sin B. 11:2768–2782. DOI: 10.1016/j.apsb.2021.02.006. PMID: 34589396. PMCID: PMC8463274. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85111499098&origin=inward.
Article
9. Xia S, Zhang Z, Magupalli VG, Pablo JL, Dong Y, Vora SM, Wang L, Fu TM, Jacobson MP, Greka A, Lieberman J, Ruan J, Wu H. 2021; Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature. 593:607–611. DOI: 10.1038/s41586-021-03478-3. PMID: 33883744. PMCID: PMC8588876. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85104775814&origin=inward.
Article
10. Liu C, Zhuo H, Ye MY, Huang GX, Fan M, Huang XZ. 2020; LncRNA MALAT1 promoted high glucose-induced pyroptosis of renal tubular epithelial cell by sponging miR-30c targeting for NLRP3. Kaohsiung J Med Sci. 36:682–691. DOI: 10.1002/kjm2.12226. PMID: 32391974. PMID: 890320e4d2f24cafade258652fc96001. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85084455177&origin=inward.
Article
11. Gu J, Huang W, Zhang W, Zhao T, Gao C, Gan W, Rao M, Chen Q, Guo M, Xu Y, Xu YH. 2019; Sodium butyrate alleviates high-glucose-induced renal glomerular endothelial cells damage via inhibiting pyroptosis. Int Immunopharmacol. 75:105832. DOI: 10.1016/j.intimp.2019.105832. PMID: 31473434. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85071400890&origin=inward.
Article
12. Zhou K, Zhang J, Liu C, Ou L, Wang F, Yu Y, Wang Y, Bai S. 2021; Sanziguben polysaccharides inhibit diabetic nephropathy through NF-κB-mediated anti-inflammation. Nutr Metab (Lond). 18:81. DOI: 10.1186/s12986-021-00601-z. PMID: 34493288. PMCID: PMC8425148. PMID: 4980afbe3f9444d59df7112f4e555ef3. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85114408320&origin=inward.
Article
13. Zheng ZC, Zhu W, Lei L, Liu XQ, Wu YG. 2020; Wogonin ameliorates renal inflammation and fibrosis by inhibiting NF-κB and TGF-β1/Smad3 signaling pathways in diabetic nephropathy. Drug Des Devel Ther. 14:4135–4148. DOI: 10.2147/DDDT.S274256. PMID: 33116403. PMCID: PMC7549498. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85092398377&origin=inward.
14. Wu M, Yang Z, Zhang C, Shi Y, Han W, Song S, Mu L, Du C, Shi Y. 2021; Inhibition of NLRP3 inflammasome ameliorates podocyte damage by suppressing lipid accumulation in diabetic nephropathy. Metabolism. 118:154748. DOI: 10.1016/j.metabol.2021.154748. PMID: 33675822. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85102270436&origin=inward.
Article
15. Hou Y, Lin S, Qiu J, Sun W, Dong M, Xiang Y, Wang L, Du P. 2020; NLRP3 inflammasome negatively regulates podocyte autophagy in diabetic nephropathy. Biochem Biophys Res Commun. 521:791–798. DOI: 10.1016/j.bbrc.2019.10.194. PMID: 31703838. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85075460463&origin=inward.
Article
16. El-Sisi AEE, Sokar SS, Shebl AM, Mohamed DZ, Abu-Risha SE. 2021; Octreotide and melatonin alleviate inflammasome-induced pyroptosis through inhibition of TLR4-NF-κB-NLRP3 pathway in hepatic ischemia/reperfusion injury. Toxicol Appl Pharmacol. 410:115340. DOI: 10.1016/j.taap.2020.115340. PMID: 33264646. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85097207719&origin=inward.
Article
17. Chen X, Liu G, Yuan Y, Wu G, Wang S, Yuan L. 2019; NEK7 interacts with NLRP3 to modulate the pyroptosis in inflammatory bowel disease via NF-κB signaling. Cell Death Dis. 10:906. DOI: 10.1038/s41419-019-2157-1. PMID: 31787755. PMCID: PMC6885517. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85075779323&origin=inward.
Article
18. Li F, Xu D, Hou K, Gou X, Lv N, Fang W, Li Y. 2021; Pretreatment of indobufen and aspirin and their combinations with clopidogrel or ticagrelor alleviates inflammasome mediated pyroptosis via inhibiting NF-κB/NLRP3 pathway in ischemic stroke. J Neuroimmune Pharmacol. 16:835–853. DOI: 10.1007/s11481-020-09978-9. PMID: 33512659. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85099983829&origin=inward.
Article
19. Wang Y, Zhu X, Yuan S, Wen S, Liu X, Wang C, Qu Z, Li J, Liu H, Sun L, Liu F. 2019; TLR4/NF-κB signaling induces GSDMD-related pyroptosis in tubular cells in diabetic kidney disease. Front Endocrinol (Lausanne). 10:603. DOI: 10.3389/fendo.2019.00603. PMID: 31608008. PMCID: PMC6761221. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85072989012&origin=inward.
Article
20. Yeh YC, Lin HH, Tang MJ. 2019; Dichotomy of the function of DDR1 in cells and disease progression. Biochim Biophys Acta Mol Cell Res. 1866:118473. DOI: 10.1016/j.bbamcr.2019.04.003. PMID: 30954568. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85064591684&origin=inward.
Article
21. Leitinger B. 2014; Discoidin domain receptor functions in physiological and pathological conditions. Int Rev Cell Mol Biol. 310:39–87. DOI: 10.1016/B978-0-12-800180-6.00002-5. PMID: 24725424. PMCID: PMC4021107. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84898029568&origin=inward.
Article
22. Yan L, Xie X, Niu BX, Wu MT, Tong WQ, He SY, Huang CY, Zhao WC, Li G, Li NS, Jiang JL. 2021; Involvement of miR-199a-3p/DDR1 in vascular endothelial cell senescence in diabetes. Eur J Pharmacol. 908:174317. DOI: 10.1016/j.ejphar.2021.174317. PMID: 34270989. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85110319625&origin=inward.
Article
23. Kerroch M, Guerrot D, Vandermeersch S, Placier S, Mesnard L, Jouanneau C, Rondeau E, Ronco P, Boffa JJ, Chatziantoniou C, Dussaule JC. 2012; Genetic inhibition of discoidin domain receptor 1 protects mice against crescentic glomerulonephritis. FASEB J. 26:4079–4091. DOI: 10.1096/fj.11-194902. PMID: 22751008. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84868089019&origin=inward.
Article
24. Shen B, Wang F, Zhou Y, Li T, He C, Zhao W. 2021; Ginsenoside Rh2 inhibits renal fibrosis and renal cell apoptosis in rats with diabetic nephropathy by downregulating discoid domain receptor 1. Nan Fang Yi Ke Da Xue Xue Bao. 41:1107–1113. Chinese. DOI: 10.1096/fj.11-194902. PMID: 34308864. PMCID: PMC8329676. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84868089019&origin=inward.
25. Kwon G, Uddin MJ, Lee G, Jiang S, Cho A, Lee JH, Lee SR, Bae YS, Moon SH, Lee SJ, Cha DR, Ha H. 2017; A novel pan-Nox inhibitor, APX-115, protects kidney injury in streptozotocin-induced diabetic mice: possible role of peroxisomal and mitochondrial biogenesis. Oncotarget. 8:74217–74232. DOI: 10.18632/oncotarget.18540. PMID: 29088780. PMCID: PMC5650335. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85030100536&origin=inward.
Article
26. Koye DN, Shaw JE, Reid CM, Atkins RC, Reutens AT, Magliano DJ. 2017; Incidence of chronic kidney disease among people with diabetes: a systematic review of observational studies. Diabet Med. 34:887–901. DOI: 10.1111/dme.13324. PMID: 28164387. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85014785989&origin=inward.
Article
27. Li P, Dong XR, Zhang B, Zhang XT, Liu JZ, Ma DS, Ma L. 2021; Molecular mechanism and therapeutic targeting of necrosis, apoptosis, pyroptosis, and autophagy in cardiovascular disease. Chin Med J (Engl). 134:2647–2655. DOI: 10.1097/CM9.0000000000001772. PMID: 34608069. PMCID: PMC8631411. PMID: 1188f001c57f4b9393944cbbadb63a68. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85120690324&origin=inward.
Article
28. Wang Q, Wu J, Zeng Y, Chen K, Wang C, Yang S, Sun N, Chen H, Duan K, Zeng G. 2020; Pyroptosis: a pro-inflammatory type of cell death in cardiovascular disease. Clin Chim Acta. 510:62–72. DOI: 10.1016/j.cca.2020.06.044. PMID: 32622968. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85087889542&origin=inward.
Article
29. Zhu W, Li YY, Zeng HX, Liu XQ, Sun YT, Jiang L, Xia LL, Wu YG. 2021; Carnosine alleviates podocyte injury in diabetic nephropathy by targeting caspase-1-mediated pyroptosis. Int Immunopharmacol. 101(Pt B):108236. DOI: 10.1016/j.intimp.2021.108236. PMID: 34653727. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85116865081&origin=inward.
Article
30. Zhan JF, Huang HW, Huang C, Hu LL, Xu WW. 2020; Long non-coding RNA NEAT1 regulates pyroptosis in diabetic nephropathy via mediating the miR-34c/NLRP3 axis. Kidney Blood Press Res. 45:589–602. DOI: 10.1159/000508372. PMID: 32721950. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85089129905&origin=inward.
Article
31. Zhao W, He C, Wang F. 2020; Screening potential Chinese materia medica and their monomers for treatment diabetic nephropathy based on caspase-1-mediated pyroptosis. Nan Fang Yi Ke Da Xue Xue Bao. 40:1280–1287. Chinese. DOI: 10.12122/j.issn.1673-4254.2020.09.09. PMID: 32990240. PMCID: PMC7544587. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85092121196&origin=inward.
32. Zhu M, Xing D, Lu Z, Fan Y, Hou W, Dong H, Xiong L, Dong H. 2015; DDR1 may play a key role in destruction of the blood-brain barrier after cerebral ischemia-reperfusion. Neurosci Res. 96:14–19. DOI: 10.1016/j.neures.2015.01.004. PMID: 25630038. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84929944185&origin=inward.
Article
33. Lino M, Wan MH, Rocca AS, Ngai D, Shobeiri N, Hou G, Ge C, Franceschi RT, Bendeck MP. 2018; Diabetic vascular calcification mediated by the collagen receptor discoidin domain receptor 1 via the phosphoinositide 3-kinase/Akt/runt-related transcription factor 2 signaling axis. Arterioscler Thromb Vasc Biol. 38:1878–1889. DOI: 10.1161/ATVBAHA.118.311238. PMID: 29930002. PMCID: PMC6441610. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85055597507&origin=inward.
Article
34. Malaguarnera R, Nicolosi ML, Sacco A, Morcavallo A, Vella V, Voci C, Spatuzza M, Xu SQ, Iozzo RV, Vigneri R, Morrione A, Belfiore A. 2015; Novel cross talk between IGF-IR and DDR1 regulates IGF-IR trafficking, signaling and biological responses. Oncotarget. 6:16084–16105. DOI: 10.18632/oncotarget.3177. PMID: 25840417. PMCID: PMC4599258. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84937836761&origin=inward.
Article
35. Matà R, Palladino C, Nicolosi ML, Lo Presti AR, Malaguarnera R, Ragusa M, Sciortino D, Morrione A, Maggiolini M, Vella V, Belfiore A. 2016; IGF-I induces upregulation of DDR1 collagen receptor in breast cancer cells by suppressing MIR-199a-5p through the PI3K/AKT pathway. Oncotarget. 7:7683–7700. DOI: 10.18632/oncotarget.6524. PMID: 26655502. PMCID: PMC4884947. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84958817630&origin=inward.
Article
36. Borza CM, Pozzi A. 2014; Discoidin domain receptors in disease. Matrix Biol. 34:185–192. DOI: 10.1016/j.matbio.2013.12.002. PMID: 24361528. PMCID: PMC4019715. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84900340780&origin=inward.
Article
37. Moll S, Yasui Y, Abed A, Murata T, Shimada H, Maeda A, Fukushima N, Kanamori M, Uhles S, Badi L, Cagarelli T, Formentini I, Drawnel F, Georges G, Bergauer T, Gasser R, Bonfil RD, Fridman R, Richter H, Funk J, et al. 2018; Selective pharmacological inhibition of DDR1 prevents experimentally-induced glomerulonephritis in prevention and therapeutic regime. J Transl Med. 16:148. DOI: 10.1186/s12967-018-1524-5. PMID: 29859097. PMCID: PMC5984769. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85047970806&origin=inward.
Article
38. Franco C, Hou G, Ahmad PJ, Fu EY, Koh L, Vogel WF, Bendeck MP. 2008; Discoidin domain receptor 1 (ddr1) deletion decreases atherosclerosis by accelerating matrix accumulation and reducing inflammation in low-density lipoprotein receptor-deficient mice. Circ Res. 102:1202–1211. DOI: 10.1161/CIRCRESAHA.107.170662. PMID: 18451340. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=45149117999&origin=inward.
Article
39. Hou G, Vogel W, Bendeck MP. 2001; The discoidin domain receptor tyrosine kinase DDR1 in arterial wound repair. J Clin Invest. 107:727–735. DOI: 10.1172/JCI10720. PMID: 11254672. PMCID: PMC208942. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0035107205&origin=inward.
Article
40. Donate-Correa J, Martín-Núñez E, Muros-de-Fuentes M, Mora-Fernández C, Navarro-González JF. 2015; Inflammatory cytokines in diabetic nephropathy. J Diabetes Res. 2015:948417. DOI: 10.1155/2015/948417. PMID: 25785280. PMCID: PMC4345080. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84924246974&origin=inward.
Article
41. Dong WH, Chu QQ, Liu SQ, Deng DT, Xu Q. 2020; Isobavachalcone ameliorates diabetic nephropathy in rats by inhibiting the NF-κB pathway. J Food Biochem. 44:e13405. DOI: 10.1111/jfbc.13405. PMID: 32710574. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85088397599&origin=inward.
Article
42. Kolati SR, Kasala ER, Bodduluru LN, Mahareddy JR, Uppulapu SK, Gogoi R, Barua CC, Lahkar M. 2015; BAY 11-7082 ameliorates diabetic nephropathy by attenuating hyperglycemia-mediated oxidative stress and renal inflammation via NF-κB pathway. Environ Toxicol Pharmacol. 39:690–699. DOI: 10.1016/j.etap.2015.01.019. PMID: 25704036. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84923044693&origin=inward.
Article
43. Yi H, Peng R, Zhang LY, Sun Y, Peng HM, Liu HD, Yu LJ, Li AL, Zhang YJ, Jiang WH, Zhang Z. 2017; LincRNA-Gm4419 knockdown ameliorates NF-κB/NLRP3 inflammasome-mediated inflammation in diabetic nephropathy. Cell Death Dis. 8:e2583. DOI: 10.1038/cddis.2016.451. PMID: 28151474. PMCID: PMC5386454. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85011578559&origin=inward.
Article
44. Tang K, Su W, Huang C, Wu Y, Wu X, Lu H. 2021; Notoginsenoside R1 suppresses inflammatory response and the pyroptosis of nucleus pulposus cells via inactivating NF-κB/NLRP3 pathways. Int Immunopharmacol. 101(Pt B):107866. DOI: 10.1016/j.intimp.2021.107866. PMID: 34588155. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85115930373&origin=inward.
Article
45. Shen J, Ma H, Wang C. 2021; Triptolide improves myocardial fibrosis in rats through inhibition of nuclear factor kappa B and NLR family pyrin domain containing 3 inflammasome pathway. Korean J Physiol Pharmacol. 25:533–543. DOI: 10.4196/kjpp.2021.25.6.533. PMID: 34697264. PMCID: PMC8552823. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85119139136&origin=inward.
Article
46. He Y, Hara H, Núñez G. 2016; Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci. 41:1012–1021. DOI: 10.1016/j.tibs.2016.09.002. PMID: 27669650. PMCID: PMC5123939. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84995751273&origin=inward.
Article
47. Sun Z, Ma Y, Chen F, Wang S, Chen B, Shi J. 2018; Artesunate ameliorates high glucose-induced rat glomerular mesangial cell injury by suppressing the TLR4/NF-κB/NLRP3 inflammasome pathway. Chem Biol Interact. 293:11–19. DOI: 10.1016/j.cbi.2018.07.011. PMID: 30031708. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85050088669&origin=inward.
Article
48. Yang J, Zhou Y, Shi J. 2020; Cordycepin protects against acute pancreatitis by modulating NF-κB and NLRP3 inflammasome activation via AMPK. Life Sci. 251:117645. DOI: 10.1016/j.lfs.2020.117645. PMID: 32268154. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85082876564&origin=inward.
Article
49. Chen X, Han R, Hao P, Wang L, Liu M, Jin M, Kong D, Li X. 2018; Nepetin inhibits IL-1β induced inflammation via NF-κB and MAPKs signaling pathways in ARPE-19 cells. Biomed Pharmacother. 101:87–93. DOI: 10.1016/j.biopha.2018.02.054. PMID: 29477475. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85042376888&origin=inward.
Article
50. Peng L, Wen L, Shi QF, Gao F, Huang B, Meng J, Hu CP, Wang CM. 2020; Scutellarin ameliorates pulmonary fibrosis through inhibiting NF-κB/NLRP3-mediated epithelial-mesenchymal transition and inflammation. Cell Death Dis. 11:978. DOI: 10.1038/s41419-020-03178-2. PMID: 33188176. PMCID: PMC7666141. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85095939586&origin=inward.
Article
51. Matsuyama W, Wang L, Farrar WL, Faure M, Yoshimura T. 2004; Activation of discoidin domain receptor 1 isoform b with collagen up-regulates chemokine production in human macrophages: role of p38 mitogen-activated protein kinase and NF-kappa B. J Immunol. 172:2332–2340. DOI: 10.4049/jimmunol.172.4.2332. PMID: 14764702. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0842278630&origin=inward.
Article
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr