1. Bahrmann P, Werner GS, Heusch G, Ferrari M, Poerner TC, Voss A, Figulla HR. 2007; Detection of coronary microembolization by Doppler ultrasound in patients with stable angina pectoris undergoing elective percutaneous coronary interventions. Circulation. 115:600–608. DOI:
10.1161/CIRCULATIONAHA.106.660779. PMID:
17261655.
Article
2. Heusch G, Kleinbongard P, Böse D, Levkau B, Haude M, Schulz R, Erbel R. 2009; Coronary microembolization: from bedside to bench and back to bedside. Circulation. 120:1822–1836. DOI:
10.1161/CIRCULATIONAHA.109.888784. PMID:
19884481.
3. Otto S, Seeber M, Fujita B, Kretzschmar D, Ferrari M, Goebel B, Figulla HR, Poerner TC. 2012; Microembolization and myonecrosis during elective percutaneous coronary interventions in diabetic patients: an intracoronary Doppler ultrasound study with 2-year clinical follow-up. Basic Res Cardiol. 107:289. DOI:
10.1007/s00395-012-0289-x. PMID:
22850870.
Article
6. Mouasni S, Gonzalez V, Schmitt A, Bennana E, Guillonneau F, Mistou S, Avouac J, Ea HK, Devauchelle V, Gottenberg JE, Chiocchia G, Tourneur L. 2019; The classical NLRP3 inflammasome controls FADD unconventional secretion through microvesicle shedding. Cell Death Dis. 10:190. DOI:
10.1038/s41419-019-1412-9. PMID:
30804327. PMCID:
PMC6389912.
Article
7. Ding J, Wang K, Liu W, She Y, Sun Q, Shi J, Sun H, Wang DC, Shao F. 2016; Pore-forming activity and structural autoinhibition of the gasdermin family. Nature. 535:111–116. Erratum in:
Nature. 2016;540:150. DOI:
10.1038/nature18590. PMID:
27281216.
Article
8. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F. 2015; Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 526:660–665. DOI:
10.1038/nature15514. PMID:
26375003.
Article
10. Han Y, Liao X, Gao Z, Yang S, Chen C, Liu Y, Wang WE, Wu G, Chen X, Jose PA, Zhang Y, Zeng C. 2016; Cardiac troponin I exacerbates myocardial ischaemia/reperfusion injury by inducing the adhesion of monocytes to vascular endothelial cells via a TLR4/NF-κB-dependent pathway. Clin Sci (Lond). 130:2279–2293. DOI:
10.1042/CS20160373. PMID:
27682003.
Article
11. Wang Q, Lin P, Li P, Feng L, Ren Q, Xie X, Xu J. 2017; Ghrelin protects the heart against ischemia/reperfusion injury via inhibition of TLR4/NLRP3 inflammasome pathway. Life Sci. 186:50–58. DOI:
10.1016/j.lfs.2017.08.004. PMID:
28782532.
Article
12. Su Q, Li L, Sun Y, Yang H, Ye Z, Zhao J. 2018; Effects of the TLR4/Myd88/NF-κB signaling pathway on NLRP3 inflammasome in coronary microembolization-induced myocardial injury. Cell Physiol Biochem. 47:1497–1508. DOI:
10.1159/000490866. PMID:
29940584.
Article
13. Gu Y, Liang Z, Wang H, Jin J, Zhang S, Xue S, Chen J, He H, Duan K, Wang J, Chang X, Qiu C. 2016; Tanshinone IIA protects H9c2 cells from oxidative stress-induced cell death via microRNA-133 upregulation and Akt activation. Exp Ther Med. 12:1147–1152. DOI:
10.3892/etm.2016.3400. PMID:
27446335. PMCID:
PMC4950596.
Article
15. Li Q, Shen L, Wang Z, Jiang HP, Liu LX. 2016; Tanshinone IIA protects against myocardial ischemia reperfusion injury by activating the PI3K/Akt/mTOR signaling pathway. Biomed Pharmacother. 84:106–114. DOI:
10.1016/j.biopha.2016.09.014. PMID:
27643552.
Article
16. Li L, Li DH, Qu N, Wen WM, Huang WQ. 2010; The role of ERK1/2 signaling pathway in coronary microembolization-induced rat myocardial inflammation and injury. Cardiology. 117:207–215. DOI:
10.1159/000321713. PMID:
21150201.
Article
17. Su Q, Lv X, Sun Y, Ye Z, Kong B, Qin Z. 2018; Role of TLR4/MyD88/NF-κB signaling pathway in coronary microembolization-induced myocardial injury prevented and treated with nicorandil. Biomed Pharmacother. 106:776–784. DOI:
10.1016/j.biopha.2018.07.014. PMID:
29990871.
Article
18. Dörge H, Neumann T, Behrends M, Skyschally A, Schulz R, Kasper C, Erbel R, Heusch G. 2000; Perfusion-contraction mismatch with coronary microvascular obstruction: role of inflammation. Am J Physiol Heart Circ Physiol. 279:H2587–H2592. DOI:
10.1152/ajpheart.2000.279.6.H2587. PMID:
11087208.
Article
19. Liu T, Zhou Y, Wang JY, Su Q, Tang ZL, Liu YC, Li L. 2016; Coronary microembolization induces cardiomyocyte apoptosis in swine by activating the LOX-1-dependent mitochondrial pathway and caspase-8-dependent pathway. J Cardiovasc Pharmacol Ther. 21:209–218. DOI:
10.1177/1074248415599265. PMID:
26275408.
Article
20. Wang JY, Chen H, Su X, Zhou Y, Li L. 2017; Atorvastatin pretreatment inhibits myocardial inflammation and apoptosis in swine after coronary microembolization. J Cardiovasc Pharmacol Ther. 22:189–195. DOI:
10.1177/1074248416662348. PMID:
27587240.
Article
22. Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, Lieberman J. 2016; Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 535:153–158. DOI:
10.1038/nature18629. PMID:
27383986. PMCID:
PMC5539988.
Article
23. Li H, Wang X, Xu A. 2018; Effect of paclitaxel+hirudin on the TLR4-MyD88 signaling pathway during inflammatory activation of human coronary artery smooth muscle cells and mechanistic analysis. Cell Physiol Biochem. 50:1301–1317. DOI:
10.1159/000494588. PMID:
30355931.
Article
24. Michaeli A, Mezan S, Kühbacher A, Finkelmeier D, Elias M, Zatsepin M, Reed SG, Duthie MS, Rupp S, Lerner I, Burger-Kentischer A. 2018; Computationally designed bispecific MD2/CD14 binding peptides show TLR4 agonist activity. J Immunol. 201:3383–3391. DOI:
10.4049/jimmunol.1800380. PMID:
30348734.
Article
25. Jiang Q, Yi M, Guo Q, Wang C, Wang H, Meng S, Liu C, Fu Y, Ji H, Chen T. 2015; Protective effects of polydatin on lipopolysaccharide-induced acute lung injury through TLR4-MyD88-NF-κB pathway. Int Immunopharmacol. 29:370–376. DOI:
10.1016/j.intimp.2015.10.027. PMID:
26507165.
Article
28. Zhang X, Du Q, Yang Y, Wang J, Dou S, Liu C, Duan J. 2017; The protective effect of Luteolin on myocardial ischemia/reperfusion (I/R) injury through TLR4/NF-κB/NLRP3 inflammasome pathway. Biomed Pharmacother. 91:1042–1052. DOI:
10.1016/j.biopha.2017.05.033. PMID:
28525945.
Article
30. Zhang X, Wang Q, Wang X, Chen X, Shao M, Zhang Q, Guo D, Wu Y, Li C, Wang W, Wang Y. 2019; Tanshinone IIA protects against heart failure post-myocardial infarction via AMPKs/mTOR-dependent autophagy pathway. Biomed Pharmacother. 112:108599. DOI:
10.1016/j.biopha.2019.108599. PMID:
30798134.
Article
31. Zhang MQ, Zheng YL, Chen H, Tu JF, Shen Y, Guo JP, Yang XH, Yuan SR, Chen LZ, Chai JJ, Lu JH, Zhai CL. 2013; Sodium tanshinone IIA sulfonate protects rat myocardium against ischemia-reperfusion injury via activation of PI3K/Akt/FOXO3A/Bim pathway. Acta Pharmacol Sin. 34:1386–1396. DOI:
10.1038/aps.2013.91. PMID:
24077633. PMCID:
PMC4006464.
Article
32. Zhang Y, Zhang L, Chu W, Wang B, Zhang J, Zhao M, Li X, Li B, Lu Y, Yang B, Shan H. 2010; Tanshinone IIA inhibits miR-1 expression through p38 MAPK signal pathway in post-infarction rat cardiomyocytes. Cell Physiol Biochem. 26:991–998. DOI:
10.1159/000324012. PMID:
21220930.
Article
33. Sarhan J, Liu BC, Muendlein HI, Li P, Nilson R, Tang AY, Rongvaux A, Bunnell SC, Shao F, Green DR, Poltorak A. 2018; Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during
Yersinia infection. Proc Natl Acad Sci U S A. 115:E10888–E10897. DOI:
10.1073/pnas.1809548115. PMID:
30381458. PMCID:
PMC6243247.