Brain Tumor Res Treat.  2023 Jan;11(1):16-21. 10.14791/btrt.2022.0037.

Advances in Brain Metastasis Models

Affiliations
  • 1Department of Neurosurgery, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea

Abstract

To obtain achievements in addressing the clinical challenges of brain metastasis, we need a clear understanding of its biological mechanisms. Brain metastasis research is challenged by many practical scientific barriers. Depending on the purpose of the study, experimental brain metastasis models in vivo can be used. It is now possible to re-create the architecture and physiology of human organs. Human organoids provide unique opportunities for the study of human disease and complement animal models. The translation of experimental findings to clinical application has several barriers in the development of treatment for brain metastasis. A variety of models have provided significant contributions to the knowledge of brain metastasis pathology and remain pivotal tools for examining novel therapeutic strategies.

Keyword

Brain; Metastasis; Experimental model; Mice; Organoids

Figure

  • Fig. 1 Anterior neck dissection of the mice reveals the vagus nerve, common carotid artery, external carotid artery, and internal carotid artery.


Reference

1. Nathoo N, Chahlavi A, Barnett GH, Toms SA. Pathobiology of brain metastases. J Clin Pathol. 2005; 58:237–242. PMID: 15735152.
2. Nayak L, Lee EQ, Wen PY. Epidemiology of brain metastases. Curr Oncol Rep. 2012; 14:48–54. PMID: 22012633.
3. Barnholtz-Sloan JS, Yu C, Sloan AE, Vengoechea J, Wang M, Dignam JJ, et al. A nomogram for individualized estimation of survival among patients with brain metastasis. Neuro Oncol. 2012; 14:910–918. PMID: 22544733.
4. Palmieri D, Chambers AF, Felding-Habermann B, Huang S, Steeg PS. The biology of metastasis to a sanctuary site. Clin Cancer Res. 2007; 13:1656–1662. PMID: 17363518.
5. Steeg PS, Camphausen KA, Smith QR. Brain metastases as preventive and therapeutic targets. Nat Rev Cancer. 2011; 11:352–363. PMID: 21472002.
6. Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2002; 2:563–572. PMID: 12154349.
7. Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell. 2017; 168:670–691. PMID: 28187288.
8. Kienast Y, von Baumgarten L, Fuhrmann M, Klinkert WE, Goldbrunner R, Herms J, et al. Real-time imaging reveals the single steps of brain metastasis formation. Nat Med. 2010; 16:116–122. PMID: 20023634.
Article
9. Quail DF, Joyce JA. The microenvironmental landscape of brain tumors. Cancer Cell. 2017; 31:326–341. PMID: 28292436.
Article
10. Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat Rev Cancer. 2020; 20:26–41. PMID: 31601988.
Article
11. Valiente M, Ahluwalia MS, Boire A, Brastianos PK, Goldberg SB, Lee EQ, et al. The evolving landscape of brain metastasis. Trends Cancer. 2018; 4:176–196. PMID: 29506669.
Article
12. Kramer N, Walzl A, Unger C, Rosner M, Krupitza G, Hengstschläger M, et al. In vitro cell migration and invasion assays. Mutat Res. 2013; 752:10–24. PMID: 22940039.
Article
13. Huth J, Buchholz M, Kraus JM, Schmucker M, von Wichert G, Krndija D, et al. Significantly improved precision of cell migration analysis in time-lapse video microscopy through use of a fully automated tracking system. BMC Cell Biol. 2010; 11:24. PMID: 20377897.
Article
14. Jain P, Worthylake RA, Alahari SK. Quantitative analysis of random migration of cells using time-lapse video microscopy. J Vis Exp. 2012; 63:e3585.
Article
15. Infanger DW, Lynch ME, Fischbach C. Engineered culture models for studies of tumor-microenvironment interactions. Annu Rev Biomed Eng. 2013; 15:29–53. PMID: 23642249.
16. Kenney RM, Loeser A, Whitman NA, Lockett MR. Paper-based Transwell assays: an inexpensive alternative to study cellular invasion. Analyst. 2018; 144:206–211. PMID: 30328422.
17. Lee CH, Yu CC, Wang BY, Chang WW. Tumorsphere as an effective in vitro platform for screening anti-cancer stem cell drugs. Oncotarget. 2016; 7:1215–1226. PMID: 26527320.
Article
18. Yelle N, Bakhshinyan D, Venugopal C, Singh SK. Introduction to brain tumor stem cells. Methods Mol Biol. 2019; 1869:1–9. PMID: 30324509.
19. Drost J, Clevers H. Organoids in cancer research. Nat Rev Cancer. 2018; 18:407–418. PMID: 29692415.
20. Duarte AA, Gogola E, Sachs N, Barazas M, Annunziato S, R de Ruiter J, et al. BRCA-deficient mouse mammary tumor organoids to study cancer-drug resistance. Nat Methods. 2018; 15:134–140. PMID: 29256493.
Article
21. Choe MS, Kim JS, Yeo HC, Bae CM, Han HJ, Baek K, et al. A simple metastatic brain cancer model using human embryonic stem cell-derived cerebral organoids. FASEB J. 2020; 34:16464–16475. PMID: 33099835.
22. Kodack DP, Farago AF, Dastur A, Held MA, Dardaei L, Friboulet L, et al. Primary patient-derived cancer cells and their potential for personalized cancer patient care. Cell Rep. 2017; 21:3298–3309. PMID: 29241554.
23. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144:646–674. PMID: 21376230.
24. Day CP, Merlino G, Van Dyke T. Preclinical mouse cancer models: a maze of opportunities and challenges. Cell. 2015; 163:39–53. PMID: 26406370.
25. Cassidy JW, Caldas C, Bruna A. Maintaining tumor heterogeneity in patient-derived tumor xenografts. Cancer Res. 2015; 75:2963–2968. PMID: 26180079.
26. Daphu I, Sundstrøm T, Horn S, Huszthy PC, Niclou SP, Sakariassen PØ, et al. In vivo animal models for studying brain metastasis: value and limitations. Clin Exp Metastasis. 2013; 30:695–710. PMID: 23322381.
27. Zhong W, Myers JS, Wang F, Wang K, Lucas J, Rosfjord E, et al. Comparison of the molecular and cellular phenotypes of common mouse syngeneic models with human tumors. BMC Genomics. 2020; 21:2. PMID: 31898484.
28. Walsh NC, Kenney LL, Jangalwe S, Aryee KE, Greiner DL, Brehm MA, et al. Humanized mouse models of clinical disease. Annu Rev Pathol. 2017; 12:187–215. PMID: 27959627.
29. Tao L, Reese TA. Making mouse models that reflect human immune responses. Trends Immunol. 2017; 38:181–193. PMID: 28161189.
Article
30. Nieblas-Bedolla E, Nayyar N, Singh M, Sullivan RJ, Brastianos PK. Emerging immunotherapies in the treatment of brain metastases. Oncologist. 2021; 26:231–241. PMID: 33103803.
31. Kersten K, de Visser KE, van Miltenburg MH, Jonkers J. Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol Med. 2017; 9:137–153. PMID: 28028012.
Article
32. Gómez-Cuadrado L, Tracey N, Ma R, Qian B, Brunton VG. Mouse models of metastasis: progress and prospects. Dis Model Mech. 2017; 10:1061–1074. PMID: 28883015.
Article
33. Taggart D, Andreou T, Scott KJ, Williams J, Rippaus N, Brownlie RJ, et al. Anti-PD-1/anti-CTLA-4 efficacy in melanoma brain metastases depends on extracranial disease and augmentation of CD8+ T cell trafficking. Proc Natl Acad Sci U S A. 2018; 115:E1540–E1549. PMID: 29386395.
34. Valiente M, Van Swearingen AED, Anders CK, Bairoch A, Boire A, Bos PD, et al. Brain metastasis cell lines panel: a public resource of organotropic cell lines. Cancer Res. 2020; 80:4314–4323. PMID: 32641416.
Article
35. Siolas D, Hannon GJ. Patient-derived tumor xenografts: transforming clinical samples into mouse models. Cancer Res. 2013; 73:5315–5319. PMID: 23733750.
Article
36. Xu C, Li X, Liu P, Li M, Luo F. Patient-derived xenograft mouse models: a high fidelity tool for individualized medicine. Oncol Lett. 2019; 17:3–10. PMID: 30655732.
37. Cranmer LD, Trevor KT, Bandlamuri S, Hersh EM. Rodent models of brain metastasis in melanoma. Melanoma Res. 2005; 15:325–356. PMID: 16179861.
Article
38. Schwartz H, Blacher E, Amer M, Livneh N, Abramovitz L, Klein A, et al. Incipient melanoma brain metastases instigate astrogliosis and neuroinflammation. Cancer Res. 2016; 76:4359–4371. PMID: 27261506.
Article
39. Sarmiento Soto M, Larkin JR, Martin C, Khrapitchev AA, Maczka M, Economopoulos V, et al. STAT3-mediated astrocyte reactivity associated with brain metastasis contributes to neurovascular dysfunction. Cancer Res. 2020; 80:5642–5655. PMID: 33106335.
Article
40. Priego N, Zhu L, Monteiro C, Mulders M, Wasilewski D, Bindeman W, et al. STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis. Nat Med. 2018; 24:1024–1035. PMID: 29892069.
Article
41. Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013; 501:373–379. PMID: 23995685.
Article
42. Li Y, Muffat J, Omer A, Bosch I, Lancaster MA, Sur M, et al. Induction of expansion and folding in human cerebral organoids. Cell Stem Cell. 2017; 20:385–396.e3. PMID: 28041895.
Article
43. Sutcliffe M, Lancaster MA. A simple method of generating 3D brain organoids using standard laboratory equipment. Methods Mol Biol. 2019; 1576:1–12. PMID: 28361479.
Article
44. Qian X, Song H, Ming GL. Brain organoids: advances, applications and challenges. Development. 2019; 146:dev166074. PMID: 30992274.
Article
45. Lim JY, Lee JE, Park SA, Park SI, Yon JM, Park JA, et al. Protective effect of human-neural-crest-derived nasal turbinate stem cells against amyloid-β neurotoxicity through inhibition of osteopontin in a human cerebral organoid model of Alzheimer’s disease. Cells. 2022; 11:1029. PMID: 35326480.
Article
46. Song G, Zhao M, Chen H, Zhou X, Lenahan C, Ou Y, et al. The application of brain organoid technology in stroke research: challenges and prospects. Front Cell Neurosci. 2021; 15:646921. PMID: 34234646.
Article
47. Salmon I, Grebenyuk S, Abdel Fattah AR, Rustandi G, Pilkington T, Verfaillie C, et al. Engineering neurovascular organoids with 3D printed microfluidic chips. Lab Chip. 2022; 22:1615–1629. PMID: 35333271.
Article
Full Text Links
  • BTRT
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr