1. Doyen J, Falk AT, Floquet V, Hérault J, Hannoun-Lévi JM. 2016; Proton beams in cancer treatments: clinical outcomes and dosimetric comparisons with photon therapy. Cancer Treat Rev. 43:104–112. DOI:
10.1016/j.ctrv.2015.12.007. PMID:
26827698.
Article
2. Jakobi A, Stützer K, Bandurska-Luque A, Löck S, Haase R, Wack LJ, et al. 2015; NTCP reduction for advanced head and neck cancer patients using proton therapy for complete or sequential boost treatment versus photon therapy. Acta Oncol. 54:1658–1664. DOI:
10.3109/0284186X.2015.1071920. PMID:
26340301.
Article
4. Fang J, Nakamura H, Maeda H. 2011; The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 63:136–151. DOI:
10.1016/j.addr.2010.04.009. PMID:
20441782.
Article
5. Knäusl B, Fuchs H, Dieckmann K, Georg D. 2016; Can particle beam therapy be improved using helium ions? - a planning study focusing on pediatric patients. Acta Oncol. 55:751–759. DOI:
10.3109/0284186X.2015.1125016. PMID:
26750803.
Article
6. Perl J, Shin J, Schumann J, Faddegon B, Paganetti H. 2012; TOPAS: an innovative proton Monte Carlo platform for research and clinical applications. Med Phys. 39:6818–6837. DOI:
10.1118/1.4758060. PMID:
23127075. PMCID:
PMC3493036.
Article
7. Ahn SH, Lee N, Choi C, Shin SW, Han Y, Park HC. 2018; Feasibility study of Fe3O4/TaOx nanoparticles as a radiosensitizer for proton therapy. Phys Med Biol. 63:114001. DOI:
10.1088/1361-6560/aac27b. PMID:
29726404.
8. Martínez-Rovira I, Prezado Y. 2015; Evaluation of the local dose enhancement in the combination of proton therapy and nanoparticles. Med Phys. 42:6703–6710. DOI:
10.1118/1.4934370. PMID:
26520760.
Article
9. Kyriakou I, Incerti S, Francis Z. 2015; Technical Note: Improvements in geant4 energy-loss model and the effect on low-energy electron transport in liquid water. Med Phys. 42:3870–3876. DOI:
10.1118/1.4921613. PMID:
26133588.
Article
10. Bernal MA, Bordage MC, Brown JMC, Davídková M, Delage E, El Bitar Z, et al. 2015; Track structure modeling in liquid water: a review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit. Phys Med. 31:861–874. DOI:
10.1016/j.ejmp.2015.10.087. PMID:
26653251.
Article
12. Egorov V, Egorov E. 2018. Ion beams for materials analysis: conventional and advanced approaches. Ion beam applications. IntechOpen;London: p. 37–71. DOI:
10.5772/intechopen.76297.
Article
13. Rudek B, McNamara A, Ramos-Méndez J, Byrne H, Kuncic Z, Schuemann J. 2019; Radio-enhancement by gold nanoparticles and their impact on water radiolysis for x-ray, proton and carbon-ion beams. Phys Med Biol. 64:175005. DOI:
10.1088/1361-6560/ab314c. PMID:
31295730.
Article
14. Peukert D, Kempson I, Douglass M, Bezak E. 2020; Gold nanoparticle enhanced proton therapy: a Monte Carlo simulation of the effects of proton energy, nanoparticle size, coating material, and coating thickness on dose and radiolysis yield. Med Phys. 47:651–661. DOI:
10.1002/mp.13923. PMID:
31725910.
Article