1. Buchsbaum JC, McDonald MW, Johnstone PA, Hoene T, Mendonca M, Cheng CW, et al. 2014; Range modulation in proton therapy planning: a simple method for mitigating effects of increased relative biological effectiveness at the end-of-range of clinical proton beams. Radiat Oncol. 9:2. DOI:
10.1186/1748-717X-9-2. PMID:
24383792. PMCID:
PMC3904459.
Article
2. Carabe A, Moteabbed M, Depauw N, Schuemann J, Paganetti H. 2012; Range uncertainty in proton therapy due to variable biological effectiveness. Phys Med Biol. 57:1159–1172. DOI:
10.1088/0031-9155/57/5/1159. PMID:
22330133.
Article
4. Spielberger B, Scholz M, Krämer M, Kraft G. 2001; Experimental investigations of the response of films to heavy-ion irradiation. Phys Med Biol. 46:2889–2897. DOI:
10.1088/0031-9155/46/11/309. PMID:
11720353.
Article
6. Anderson SE, Grams MP, Wan Chan Tseung H, Furutani KM, Beltran CJ. 2019; A linear relationship for the LET-dependence of Gafchromic EBT3 film in spot-scanning proton therapy. Phys Med Biol. 64:055015. DOI:
10.1088/1361-6560/ab0114. PMID:
30673655.
Article
7. Kawashima M, Matsumura A, Souda H, Tashiro M. 2020; Simultaneous determination of the dose and linear energy transfer (LET) of carbon-ion beams using radiochromic films. Phys Med Biol. 65:125002. DOI:
10.1088/1361-6560/ab8bf3. PMID:
32320970.
Article
8. Lee M, Ahn S, Cheon W, Han Y. 2020; Linear energy transfer dependence correction of spread-out Bragg peak measured by EBT3 film for dynamically scanned proton beams. Prog Med Phys. 31:135–144. DOI:
10.14316/pmp.2020.31.4.135.
Article
9. Valdetaro LB, Høye EM, Skyt PS, Petersen JBB, Balling P, Muren LP. 2021; Empirical quenching correction in radiochromic silicone-based three-dimensional dosimetry of spot-scanning proton therapy. Phys Imaging Radiat Oncol. 18:11–18. DOI:
10.1016/j.phro.2021.03.006. PMID:
34258402. PMCID:
PMC8254200.
Article
10. Kalholm F, Grzanka L, Traneus E, Bassler N. 2021; A systematic review on the usage of averaged LET in radiation biology for particle therapy. Radiother Oncol. 161:211–221. DOI:
10.1016/j.radonc.2021.04.007. PMID:
33894298.
Article
11. Birks JB. 1951; Scintillations from organic crystals: specific fluorescence and relative response to different radiations. Proc Phys Soc A. 64:874. DOI:
10.1088/0370-1298/64/10/303.
Article
12. Wang LL, Perles LA, Archambault L, Sahoo N, Mirkovic D, Beddar S. 2012; Determination of the quenching correction factors for plastic scintillation detectors in therapeutic high-energy proton beams. Phys Med Biol. 57:7767–7781. DOI:
10.1088/0031-9155/57/23/7767. PMID:
23128412. PMCID:
PMC3849705.
Article
13. Jeong S, Kim C, An S, Kwon YC, Pak SI, Cheon W, et al. 2022; Determination of the proton LET using thin film solar cells coated with scintillating powder. Med Phys. doi: 10.1002/mp.15977. DOI:
10.1002/mp.15977. PMID:
36135795.
Article
14. Perl J, Shin J, Schumann J, Faddegon B, Paganetti H. 2012; TOPAS: an innovative proton Monte Carlo platform for research and clinical applications. Med Phys. 39:6818–6837. DOI:
10.1118/1.4758060. PMID:
23127075. PMCID:
PMC3493036.
Article
15. Shin WG, Testa M, Kim HS, Jeong JH, Lee SB, Kim YJ, et al. 2017; Independent dose verification system with Monte Carlo simulations using TOPAS for passive scattering proton therapy at the National Cancer Center in Korea. Phys Med Biol. 62:7598–7616. DOI:
10.1088/1361-6560/aa8663. PMID:
28809759.
Article