1. Grills IS, Hugo G, Kestin LL, Galerani AP, Chao KK, Wloch J, et al. 2008; Image-guided radiotherapy via daily online cone-beam CT substantially reduces margin requirements for stereotactic lung radiotherapy. Int J Radiat Oncol Biol Phys. 70:1045–1056. DOI:
10.1016/j.ijrobp.2007.07.2352. PMID:
18029110.
Article
2. Wortel RC, Incrocci L, Pos FJ, Lebesque JV, Witte MG, van der Heide UA, et al. 2015; Acute toxicity after image-guided intensity modulated radiation therapy compared to 3D conformal radiation therapy in prostate cancer patients. Int J Radiat Oncol Biol Phys. 91:737–744. DOI:
10.1016/j.ijrobp.2014.12.017. PMID:
25752386.
Article
3. Diao K, Lobos EA, Yirmibesoglu E, Basak R, Hendrix LH, Barbosa B, et al. 2017; Patient-reported quality of life during definitive and postprostatectomy image-guided radiation therapy for prostate cancer. Pract Radiat Oncol. 7:e117–e124. DOI:
10.1016/j.prro.2016.08.004. PMID:
28274402.
Article
4. Huang K, Palma DA, Scott D, McGregor D, Gaede S, Yartsev S, et al. 2012; Inter- and intrafraction uncertainty in prostate bed image-guided radiotherapy. Int J Radiat Oncol Biol Phys. 84:402–407. DOI:
10.1016/j.ijrobp.2011.12.035. PMID:
22381905.
Article
6. Kupelian PA, Langen KM, Willoughby TR, Zeidan OA, Meeks SL. 2008; Image-guided radiotherapy for localized prostate cancer: treating a moving target. Semin Radiat Oncol. 18:58–66. DOI:
10.1016/j.semradonc.2007.09.008. PMID:
18082589.
Article
7. Foskey M, Davis B, Goyal L, Chang S, Chaney E, Strehl N, et al. 2005; Large deformation three-dimensional image registration in image-guided radiation therapy. Phys Med Biol. 50:5869–5892. DOI:
10.1088/0031-9155/50/24/008. PMID:
16333161.
Article
8. Button MR, Staffurth JN. 2010; Clinical application of image-guided radiotherapy in bladder and prostate cancer. Clin Oncol (R Coll Radiol). 22:698–706. DOI:
10.1016/j.clon.2010.06.020. PMID:
20688494.
Article
9. Biancia CD, Yorke E, Kollmeier MA. 2014; Image guided radiation therapy for bladder cancer: assessment of bladder motion using implanted fiducial markers. Pract Radiat Oncol. 4:108–115. DOI:
10.1016/j.prro.2013.07.008. PMID:
24890351.
Article
12. International Atomic Energy Agency (IAEA). 2019. Introduction of image guided radiotherapy into clinical practice. IAEA;Vienna: p. 16. DOI:
10.1586/14737140.7.1.89.
14. Haus AG, Pinsky SM, Marks JE. 1970; A technique for imaging patient treatment area during a therapeutic radiation exposure. Radiology. 97:653–656. DOI:
10.1148/97.3.653. PMID:
4993313.
Article
17. Mohamoud G, Ryan M, Moseley D. 2015; IGRT refresher series: a departmental initiative. J Med Imag Radiat Sci. 46(Suppl 1):S20–S21. DOI:
10.1016/j.jmir.2015.01.065.
Article
18. Verellen D, De Ridder M, Linthout N, Tournel K, Soete G, Storme G. 2007; Innovations in image-guided radiotherapy. Nat Rev Cancer. 7:949–960. Erratum in: Nat Rev Cancer. 2008;8:71. DOI:
10.1038/nrc2288. PMID:
18034185.
Article
20. Keall PJ, Nguyen DT, O'Brien R, Zhang P, Happersett L, Bertholet J, et al. 2018; Review of real-time 3-dimensional image guided radiation therapy on standard-equipped cancer radiation therapy systems: are we at the tipping point for the era of real-time radiation therapy? Int J Radiat Oncol Biol Phys. 102:922–931. DOI:
10.1016/j.ijrobp.2018.04.016. PMID:
29784460. PMCID:
PMC6800174.
Article
21. Weissbluth M, Karzmark CJ, Steele RE, Selby AH. 1959; The stanford medical linear accelerator. Radiology. 72:242–253. DOI:
10.1148/72.2.242. PMID:
13634384.
Article
22. Jaffray DA, Drake DG, Moreau M, Martinez AA, Wong JW. 1999; A radiographic and tomographic imaging system integrated into a medical linear accelerator for localization of bone and soft-tissue targets. Int J Radiat Oncol Biol Phys. 45:773–789. DOI:
10.1016/S0360-3016(99)00118-2. PMID:
10524434.
Article
23. Hong LX, Chen CC, Garg M, Yaparpalvi R, Mah D. 2009; Clinical experiences with onboard imager KV images for linear accelerator-based stereotactic radiosurgery and radiotherapy setup. Int J Radiat Oncol Biol Phys. 73:556–561. DOI:
10.1016/j.ijrobp.2008.09.055. PMID:
19147020.
Article
24. Wiehle R, Koth HJ, Nanko N, Grosu AL, Hodapp N. 2009; On the accuracy of isocenter verification with kV imaging in stereotactic radiosurgery. Strahlenther Onkol. 185:325–330. DOI:
10.1007/s00066-009-1871-5. PMID:
19440672.
Article
25. Lee SW, Jin JY, Guan H, Martin F, Kim JH, Yin FF. 2008; Clinical assessment and characterization of a dual tube kilovoltage X-ray localization system in the radiotherapy treatment room. J Appl Clin Med Phys. 9:1–15. DOI:
10.1120/jacmp.v9i1.2318. PMID:
18449161. PMCID:
PMC5721528.
Article
26. Ma J, Chang Z, Wang Z, Jackie Wu Q, Kirkpatrick JP, Yin FF. 2009; ExacTrac X-ray 6 degree-of-freedom image-guidance for intracranial non-invasive stereotactic radiotherapy: comparison with kilo-voltage cone-beam CT. Radiother Oncol. 93:602–608. DOI:
10.1016/j.radonc.2009.09.009. PMID:
19846229.
Article
27. Srinivasan K, Mohammadi M, Shepherd J. 2014; Applications of linac-mounted kilovoltage Cone-beam Computed Tomography in modern radiation therapy: a review. Pol J Radiol. 79:181–193. DOI:
10.12659/PJR.890745. PMID:
25006356. PMCID:
PMC4085117.
Article
28. Oelfke U, Tücking T, Nill S, Seeber A, Hesse B, Huber P, et al. 2006; Linac-integrated kV-cone beam CT: technical features and first applications. Med Dosim. 31:62–70. DOI:
10.1016/j.meddos.2005.12.008. PMID:
16551530.
Article
29. Morin O, Gillis A, Chen J, Aubin M, Bucci MK, Roach M 3rd, et al. 2006; Megavoltage cone-beam CT: system description and clinical applications. Med Dosim. 31:51–61. DOI:
10.1016/j.meddos.2005.12.009. PMID:
16551529.
Article
30. Pouliot J, Bani-Hashemi A, Chen J, Svatos M, Ghelmansarai F, Mitschke M, et al. 2005; Low-dose megavoltage cone-beam CT for radiation therapy. Int J Radiat Oncol Biol Phys. 61:552–560. DOI:
10.1016/j.ijrobp.2004.10.011. PMID:
15736320.
Article
31. Groh BA, Siewerdsen JH, Drake DG, Wong JW, Jaffray DA. 2002; A performance comparison of flat-panel imager-based MV and kV cone-beam CT. Med Phys. 29:967–975. DOI:
10.1118/1.1477234. PMID:
12094992.
Article
33. Wong JR, Grimm L, Uematsu M, Oren R, Cheng CW, Merrick S, et al. 2005; Image-guided radiotherapy for prostate cancer by CT-linear accelerator combination: prostate movements and dosimetric considerations. Int J Radiat Oncol Biol Phys. 61:561–569. DOI:
10.1016/j.ijrobp.2004.06.010. PMID:
15667979.
Article
34. Wu M, Keil A, Constantin D, Star-Lack J, Zhu L, Fahrig R. 2014; Metal artifact correction for x-ray computed tomography using kV and selective MV imaging. Med Phys. 41:121910. DOI:
10.1118/1.4901551. PMID:
25471970. PMCID:
PMC4290750.
Article
35. Khan FM. 2009. The physics of radiation therapy. 4th ed. Lippincott, Willams & Wilkins;Philadelpia: p. 414–424.
36. Khan FM. Treatment planning in radiation oncology. 2 nd ed. Lippincott, Willams & Wilkins;Philadelpia: p. 178–179.
37. Song KH, Snyder KC, Kim J, Li H, Ning W, Rusnac R, et al. 2016; Characterization and evaluation of 2.5 MV electronic portal imaging for accurate localization of intra- and extracranial stereotactic radiosurgery. J Appl Clin Med Phys. 17:268–284. DOI:
10.1120/jacmp.v17i4.6247. PMID:
27455505. PMCID:
PMC5690040.
Article
38. Forrest LJ, Mackie TR, Ruchala K, Turek M, Kapatoes J, Jaradat H, et al. 2004; The utility of megavoltage computed tomography images from a helical tomotherapy system for setup verification purposes. Int J Radiat Oncol Biol Phys. 60:1639–1644. DOI:
10.1016/j.ijrobp.2004.08.016. PMID:
15590196.
Article
39. Netherton T, Li Y, Gao S, Klopp A, Balter P, Court LE, et al. 2019; Experience in commissioning the halcyon linac. Med Phys. 46:4304–4313. DOI:
10.1002/mp.13723. PMID:
31310678.
Article
40. Malajovich I, Teo BK, Petroccia H, Metz JM, Dong L, Li T. 2019; Characterization of the megavoltage cone-beam computed tomography (MV-CBCT) system on HalcyonTM for IGRT: image quality benchmark, clinical performance, and organ doses. Front Oncol. 9:496. DOI:
10.3389/fonc.2019.00496. PMID:
31249808. PMCID:
PMC6582256.
Article
42. Yue Y, Aristophanous M, Rottmann J, Berbeco RI. 2011; 3-D fiducial motion tracking using limited MV projections in arc therapy. Med Phys. 38:3222–3231. DOI:
10.1118/1.3584197. PMID:
21815397.
Article
43. Azcona JD, Li R, Mok E, Hancock S, Xing L. 2013; Automatic prostate tracking and motion assessment in volumetric modulated arc therapy with an electronic portal imaging device. Int J Radiat Oncol Biol Phys. 86:762–768. DOI:
10.1016/j.ijrobp.2013.03.007. PMID:
23608236. PMCID:
PMC3686883.
Article
44. Tang X, Lin T, Jiang S. 2009; A feasibility study of treatment verification using EPID cine images for hypofractionated lung radiotherapy. Phys Med Biol. 54:S1–S8. DOI:
10.1088/0031-9155/54/18/S01. PMID:
19687565.
Article
45. Shirato H, Shimizu S, Kitamura K, Onimaru R. 2007; Organ motion in image-guided radiotherapy: lessons from real-time tumor-tracking radiotherapy. Int J Clin Oncol. 12:8–16. DOI:
10.1007/s10147-006-0633-y. PMID:
17380435.
Article
48. Stam MK, Crijns SP, Zonnenberg BA, Barendrecht MM, van Vulpen M, Lagendijk JJ, et al. 2012; Navigators for motion detection during real-time MRI-guided radiotherapy. Phys Med Biol. 57:6797–6805. DOI:
10.1088/0031-9155/57/21/6797. PMID:
23032581.
Article
49. Raaijmakers AJ, Raaymakers BW, Lagendijk JJ. 2008; Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength. Phys Med Biol. 53:909–923. DOI:
10.1088/0031-9155/53/4/006. PMID:
18263948.
Article
50. Raaijmakers AJ, Raaymakers BW, Lagendijk JJ. 2005; Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose increase at tissue-air interfaces in a lateral magnetic field due to returning electrons. Phys Med Biol. 50:1363–1376. DOI:
10.1088/0031-9155/50/7/002. PMID:
15798329.
Article
51. Raaijmakers AJ, Raaymakers BW, van der Meer S, Lagendijk JJ. 2007; Integrating a MRI scanner with a 6 MV radiotherapy accelerator: impact of the surface orientation on the entrance and exit dose due to the transverse magnetic field. Phys Med Biol. 52:929–939. DOI:
10.1088/0031-9155/52/4/005. PMID:
17264362.
Article
52. Raaymakers BW, Raaijmakers AJ, Kotte AN, Jette D, Lagendijk JJ. 2004; Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose deposition in a transverse magnetic field. Phys Med Biol. 49:4109–4118. DOI:
10.1088/0031-9155/49/17/019. PMID:
15470926.
Article
53. Stanescu T, Schaer N, Breen S, Letourneau D, Shet K, Dickie CI, et al. 2016; Magnetic resonance guided radiation therapy: feasibility study of a linear accelerator and magnetic resonance-on-rails system. Int J Radiat Oncol Biol Phys. 96(Suppl 2):S61–S62. DOI:
10.1016/j.ijrobp.2016.06.158.
Article
54. Jaffray DA, Carlone MC, Milosevic MF, Breen SL, Stanescu T, Rink A, et al. 2014; A facility for magnetic resonance-guided radiation therapy. Semin Radiat Oncol. 24:193–195. DOI:
10.1016/j.semradonc.2014.02.012. PMID:
24931091.
Article
56. Choi CH, Park SY, Kim JI, Kim JH, Kim K, Carlson J, et al. 2017; Quality of tri-Co-60 MR-IGRT treatment plans in comparison with VMAT treatment plans for spine SABR. Br J Radiol. 90:20160652. DOI:
10.1259/bjr.20160652. PMID:
27781486. PMCID:
PMC5685120.
Article
58. Raaymakers BW, Jürgenliemk-Schulz IM, Bol GH, Glitzner M, Kotte ANTJ, van Asselen B, et al. 2017; First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment. Phys Med Biol. 62:L41–L50. DOI:
10.1088/1361-6560/aa9517. PMID:
29135471.
Article
59. Raaymakers BW, Lagendijk JJ, Overweg J, Kok JG, Raaijmakers AJ, Kerkhof EM, et al. 2009; Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept. Phys Med Biol. 54:N229–N237. DOI:
10.1088/0031-9155/54/12/N01. PMID:
19451689.
Article
60. Winkel D, Bol GH, Kroon PS, van Asselen B, Hackett SS, Werensteijn-Honingh AM, et al. 2019; Adaptive radiotherapy: The Elekta Unity MR-linac concept. Clin Transl Radiat Oncol. 18:54–59. DOI:
10.1016/j.ctro.2019.04.001. PMID:
31341976. PMCID:
PMC6630157.
Article
63. Cusumano D, Boldrini L, Dhont J, Fiorino C, Green O, Güngör G, et al. 2021; Artificial Intelligence in magnetic Resonance guided Radiotherapy: medical and physical considerations on state of art and future perspectives. Phys Med. 85:175–191. DOI:
10.1016/j.ejmp.2021.05.010. PMID:
34022660.
Article
64. Langen KM, Pouliot J, Anezinos C, Aubin M, Gottschalk AR, Hsu IC, et al. 2003; Evaluation of ultrasound-based prostate localization for image-guided radiotherapy. Int J Radiat Oncol Biol Phys. 57:635–644. DOI:
10.1016/S0360-3016(03)00633-3. PMID:
14529767.
Article
65. Scarbrough TJ, Golden NM, Ting JY, Fuller CD, Wong A, Kupelian PA, et al. 2006; Comparison of ultrasound and implanted seed marker prostate localization methods: implications for image-guided radiotherapy. Int J Radiat Oncol Biol Phys. 65:378–387. DOI:
10.1016/j.ijrobp.2006.01.008. PMID:
16563658.
Article
66. Camps SM, Fontanarosa D, de With PHN, Verhaegen F, Vanneste BGL. 2018; The use of ultrasound imaging in the external beam radiotherapy workflow of prostate cancer patients. Biomed Res Int. 2018:7569590. DOI:
10.1155/2018/7569590. PMID:
29619375. PMCID:
PMC5829356.
Article
67. Richardson AK, Jacobs P. 2017; Intrafraction monitoring of prostate motion during radiotherapy using the Clarity® Autoscan Transperineal Ultrasound (TPUS) system. Radiography (Lond). 23:310–313. DOI:
10.1016/j.radi.2017.07.003. PMID:
28965894.
Article
68. Lachaine M, Falco T. 2013; Intrafractional prostate motion management with the Clarity Autoscan System. Med Phys Int J. 1:72–80.
69. Baker M, Behrens CF. 2015; Prostate displacement during transabdominal ultrasound image-guided radiotherapy assessed by real-time four-dimensional transperineal monitoring. Acta Oncol. 54:1508–1514. DOI:
10.3109/0284186X.2015.1061208. PMID:
26203927.
Article
70. Brahme A, Nyman P, Skatt B. 2008; 4D laser camera for accurate patient positioning, collision avoidance, image fusion and adaptive approaches during diagnostic and therapeutic procedures. Med Phys. 35:1670–1681. DOI:
10.1118/1.2889720. PMID:
18561642.
Article
71. Pallotta S, Marrazzo L, Ceroti M, Silli P, Bucciolini M. 2012; A phantom evaluation of Sentinel™, a commercial laser/camera surface imaging system for patient setup verification in radiotherapy. Med Phys. 39:706–712. DOI:
10.1118/1.3675973. PMID:
22320780.
Article
73. Hattel SH, Andersen PA, Wahlstedt IH, Damkjaer S, Saini A, Thomsen JB. 2019; Evaluation of setup and intrafraction motion for surface guided whole-breast cancer radiotherapy. J Appl Clin Med Phys. 20:39–44. DOI:
10.1002/acm2.12599. PMID:
31187538. PMCID:
PMC6560238.
Article
74. Kügele M, Edvardsson A, Berg L, Alkner S, Andersson Ljus C, Ceberg S. 2018; Dosimetric effects of intrafractional isocenter variation during deep inspiration breath-hold for breast cancer patients using surface-guided radiotherapy. J Appl Clin Med Phys. 19:25–38. DOI:
10.1002/acm2.12214. PMID:
29139223. PMCID:
PMC5768000.
Article
75. Lee SK, Huang S, Zhang L, Ballangrud AM, Aristophanous M, Cervino Arriba LI, et al. 2021; Accuracy of surface-guided patient setup for conventional radiotherapy of brain and nasopharynx cancer. J Appl Clin Med Phys. 22:48–57. DOI:
10.1002/acm2.13241. PMID:
33792186. PMCID:
PMC8130230.
Article
76. Li G, Ballangrud A, Kuo LC, Kang H, Kirov A, Lovelock M, et al. 2011; Motion monitoring for cranial frameless stereotactic radiosurgery using video-based three-dimensional optical surface imaging. Med Phys. 38:3981–3994. DOI:
10.1118/1.3596526. PMID:
21858995.
Article
77. Walter F, Freislederer P, Belka C, Heinz C, Söhn M, Roeder F. 2016; Evaluation of daily patient positioning for radiotherapy with a commercial 3D surface-imaging system (Catalyst™). Radiat Oncol. 11:154. DOI:
10.1186/s13014-016-0728-1. PMID:
27881158. PMCID:
PMC5122202.
Article
78. Kügele M, Mannerberg A, Nørring Bekke S, Alkner S, Berg L, Mahmood F, et al. 2019; Surface guided radiotherapy (SGRT) improves breast cancer patient setup accuracy. J Appl Clin Med Phys. 20:61–68. DOI:
10.1002/acm2.12700. PMID:
31478615. PMCID:
PMC6753725.
Article
79. Stanley DN, McConnell KA, Kirby N, Gutiérrez AN, Papanikolaou N, Rasmussen K. 2017; Comparison of initial patient setup accuracy between surface imaging and three point localization: a retrospective analysis. J Appl Clin Med Phys. 18:58–61. DOI:
10.1002/acm2.12183. PMID:
28901684. PMCID:
PMC5689923.
Article
80. Chow VUY, Cheung MLM, Kan MWK, Chan ATC. 2022; Shift detection discrepancy between ExacTrac Dynamic system and cone-beam computed tomography. J Appl Clin Med Phys. 23:e13567. DOI:
10.1002/acm2.13567. PMID:
35188333. PMCID:
PMC9121052.
Article
81. Das S, Liu T, Jani AB, Rossi P, Shelton J, Shi Z, et al. 2014; Comparison of image-guided radiotherapy technologies for prostate cancer. Am J Clin Oncol. 37:616–623. DOI:
10.1097/COC.0b013e31827e4eb9. PMID:
23428948.
Article
82. Willoughby TR, Kupelian PA, Pouliot J, Shinohara K, Aubin M, Roach M 3rd, et al. 2006; Target localization and real-time tracking using the Calypso 4D localization system in patients with localized prostate cancer. Int J Radiat Oncol Biol Phys. 65:528–534. DOI:
10.1016/j.ijrobp.2006.01.050. PMID:
16690435.
Article
83. Ogunleye T, Rossi PJ, Jani AB, Fox T, Elder E. 2009; Performance evaluation of Calypso 4D localization and kilovoltage image guidance systems for interfraction motion management of prostate patients. ScientificWorldJournal. 9:449–458. DOI:
10.1100/tsw.2009.61. PMID:
19526184. PMCID:
PMC5823203.
Article
84. Rajendran RR, Plastaras JP, Mick R, McMichael Kohler D, Kassaee A, Vapiwala N. 2010; Daily isocenter correction with electromagnetic-based localization improves target coverage and rectal sparing during prostate radiotherapy. Int J Radiat Oncol Biol Phys. 76:1092–1099. DOI:
10.1016/j.ijrobp.2009.03.036. PMID:
19625136.
Article