Korean J Physiol Pharmacol.  2023 Jan;27(1):39-48. 10.4196/kjpp.2023.27.1.39.

SKF96365 impedes spinal glutamatergic transmission-mediated neuropathic allodynia

Affiliations
  • 1Department of Pharmacy, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai 200240, China
  • 2Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai 200240, China

Abstract

Spinal nerve injury causes mechanical allodynia and structural imbalance of neurotransmission, which were typically associated with calcium overload. Storeoperated calcium entry (SOCE) is considered crucial elements-mediating intracellular calcium homeostasis, ion channel activity, and synaptic plasticity. However, the underlying mechanism of SOCE in mediating neuronal transmitter release and synaptic transmission remains ambiguous in neuropathic pain. Neuropathic rats were operated by spinal nerve ligations. Neurotransmissions were assessed by whole-cell recording in substantia gelatinosa. Immunofluorescence staining of STIM1 with neuronal and glial biomarkers in the spinal dorsal horn. The endoplasmic reticulum stress level was estimated from qRT-PCR. Intrathecal injection of SOCE antagonist SKF96365 dose-dependently alleviated mechanical allodynia in ipsilateral hind paws of neuropathic rats with ED 50 of 18 μg. Immunofluorescence staining demonstrated that STIM1 was specifically and significantly expressed in neurons but not astrocytes and microglia in the spinal dorsal horn. Bath application of SKF96365 inhibited enhanced miniature excitatory postsynaptic currents in a dosage-dependent manner without affecting miniature inhibitory postsynaptic currents. Mal-adaption of SOCE was commonly related to endoplasmic reticulum (ER) stress in the central nervous system. SKF96365 markedly suppressed ER stress levels by alleviating mRNA expression of C/ EBP homologous protein and heat shock protein 70 in neuropathic rats. Our findings suggested that nerve injury might promote SOCE-mediated calcium levels, resulting in long-term imbalance of spinal synaptic transmission and behavioral sensitization, SKF96365 produces antinociception by alleviating glutamatergic transmission and ER stress. This work demonstrated the involvement of SOCE in neuropathic pain, implying that SOCE might be a potential target for pain management.

Keyword

Glutamatergic transmission; Neuralgia; SKF96365; STIM1

Figure

  • Fig. 1 Intrathecal delivery of SKF96365 exhibited mechanically antiallodynic effects (A, B) in neuropathic rats induced by spinal nerve ligations. Data are presented as means ± SEM (n = 5–6 per group). *p < 0.05, by two-tailed Student t-test or repeated-measures two-way ANOVA followed by Sidak’s post-tests.

  • Fig. 2 Dual fluorescence labeling of stromal-interacting molecule-1 (STIM1) with the mature neuronal marker neuronal nuclei (NeuN, A), astrocytic marker GFAP (B), and microglial marker Iba1 (C) in the spinal cord of superficial dorsal horns (laminae I–III), respectively (n = 3 animals). Scale bar: 100 μm (×10) , 50 μm is (×20).

  • Fig. 3 Store-operated calcium entry (SOCE) antagonist SKF96365 attenuated the spinal nerve ligation (SNL)-induced increased glutamatergic transmission in the spinal dorsal horn of the ipsilateral hind paws. Sample traces (A), cumulative distribution (B), and statistical analysis (C) of miniature excitatory postsynaptic currents (mEPSCs); Sample traces (D), cumulative distribution (E), and statistical analysis (F) of miniature inhibitory postsynaptic currents (mIPSCs). Data are presented as the means ± SEM (n = 5–6 animals). n.s., not significant. *p < 0.05, by one‐way or repeated‐measures two‐way ANOVA followed by Sidak’s post‐tests).

  • Fig. 4 SKF96365 alleviated endoplasmic reticulum stress in neuropathic rats. Relative mRNA expression of C/EBP homologous protein (CHOP) (A) and heat shock protein 70 (HSP70) (B) in spinal dorsal horn. Data are presented as means ± SEM (n = 8 per group). *p < 0.05, by repeated-measures two-way ANOVA followed by Sidak’s post-tests.

  • Fig. 5 Schematic diagram showing the role of SKF96365 exerted potential blocking effects via inhibition of STIM1 and Orai1 mediated calcium influx in membrane and downregulation of neuronal calcium homeostasis, subsequently, SKF96365 induced inhibition of spinal excitatory synaptic transmission and pain hypersensitivity in neuropathic pain. STIM1, stromal-interacting molecule-1; CHOP, C/EBP homologous protein; HSP70, heat shock protein 70; NMDAR, N-methyl-D-aspartic acid receptor.


Reference

1. Kim YS, Chu Y, Han L, Li M, Li Z, LaVinka PC, Sun S, Tang Z, Park K, Caterina MJ, Ren K, Dubner R, Wei F, Dong X. 2014; Central terminal sensitization of TRPV1 by descending serotonergic facilitation modulates chronic pain. Neuron. 81:873–887. DOI: 10.1016/j.neuron.2013.12.011. PMID: 24462040. PMCID: PMC3943838. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84896700036&origin=inward.
2. Majewski L, Kuznicki J. 2015; SOCE in neurons: signaling or just refilling? Biochim Biophys Acta. 1853:1940–1952. DOI: 10.1016/j.bbamcr.2015.01.019. PMID: 25646572. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84952629974&origin=inward.
3. Michaelis M, Nieswandt B, Stegner D, Eilers J, Kraft R. 2015; STIM1, STIM2, and Orai1 regulate store-operated calcium entry and purinergic activation of microglia. Glia. 63:652–663. DOI: 10.1002/glia.22775. PMID: 25471906. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84922946155&origin=inward.
4. Park YJ, Yoo SA, Kim M, Kim WU. 2020; The role of calcium-calcineurin-NFAT signaling pathway in health and autoimmune diseases. Front Immunol. 11:195. DOI: 10.3389/fimmu.2020.00195. PMID: 32210952. PMCID: PMC7075805. PMID: 9f3873ea62ad417ab30c475584d25eeb. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85082381011&origin=inward.
5. Secondo A, Bagetta G, Amantea D. 2018; On the role of store-operated calcium entry in acute and chronic neurodegenerative diseases. Front Mol Neurosci. 11:87. DOI: 10.3389/fnmol.2018.00087. PMID: 29623030. PMCID: PMC5874322. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85046890399&origin=inward.
6. Moccia F, Zuccolo E, Soda T, Tanzi F, Guerra G, Mapelli L, Lodola F, D'Angelo E. 2015; Stim and Orai proteins in neuronal Ca2+ signaling and excitability. Front Cell Neurosci. 9:153. DOI: 10.3389/fncel.2015.00153. PMID: 25964739. PMCID: PMC4408853. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84929603569&origin=inward.
7. Tiscione SA, Vivas O, Ginsburg KS, Bers DM, Ory DS, Santana LF, Dixon RE, Dickson EJ. 2019; Disease-associated mutations in Niemann-Pick type C1 alter ER calcium signaling and neuronal plasticity. J Cell Biol. 218:4141–4156. DOI: 10.1083/jcb.201903018. PMID: 31601621. PMCID: PMC6891088. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85075959287&origin=inward.
8. Mizuma A, Kim JY, Kacimi R, Stauderman K, Dunn M, Hebbar S, Yenari MA. 2019; Microglial calcium release-activated calcium channel inhibition improves outcome from experimental traumatic brain injury and microglia-induced neuronal death. J Neurotrauma. 36:996–1007. DOI: 10.1089/neu.2018.5856. PMID: 30351197. PMCID: PMC6444934. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85063282669&origin=inward.
9. Gruszczynska-Biegala J, Strucinska K, Maciag F, Majewski L, Sladowska M, Kuznicki J. 2020; STIM protein-NMDA2 receptor interaction decreases NMDA-dependent calcium levels in cortical neurons. Cells. 9:160. DOI: 10.3390/cells9010160. PMID: 31936514. PMCID: PMC7017226. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85093880018&origin=inward.
10. Shirahata M, Tang WY, Shin MK, Polotsky VY. 2015; Is the carotid body a metabolic monitor? Adv Exp Med Biol. 860:153–159. DOI: 10.1007/978-3-319-18440-1_17. PMID: 26303477. PMCID: PMC4793901. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84940050509&origin=inward.
11. Liu Z, Ma C, Zhao W, Zhang Q, Xu R, Zhang H, Lei H, Xu S. 2017; High glucose enhances isoflurane-induced neurotoxicity by regulating TRPC-dependent calcium influx. Neurochem Res. 42:1165–1178. DOI: 10.1007/s11064-016-2152-1. PMID: 28062998. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85008440119&origin=inward.
12. Gao X, Xia J, Munoz FM, Manners MT, Pan R, Meucci O, Dai Y, Hu H. 2016; STIMs and Orai1 regulate cytokine production in spinal astrocytes. J Neuroinflammation. 13:126. DOI: 10.1186/s12974-016-0594-7. PMID: 27245842. PMCID: PMC4886427. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84971500789&origin=inward.
13. Wei D, Mei Y, Xia J, Hu H. 2017; Orai1 and Orai3 mediate store-operated calcium entry contributing to neuronal excitability in dorsal root ganglion neurons. Front Cell Neurosci. 11:400. DOI: 10.3389/fncel.2017.00400. PMID: 29311831. PMCID: PMC5742109. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85040917620&origin=inward.
14. Xia J, Pan R, Gao X, Meucci O, Hu H. 2014; Native store-operated calcium channels are functionally expressed in mouse spinal cord dorsal horn neurons and regulate resting calcium homeostasis. J Physiol. 592:3443–3461. DOI: 10.1113/jphysiol.2014.275065. PMID: 24860175. PMCID: PMC4229342. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84906075337&origin=inward.
15. Kostyuk E, Voitenko N, Kruglikov I, Shmigol A, Shishkin V, Efimov A, Kostyuk P. 2001; Diabetes-induced changes in calcium homeostasis and the effects of calcium channel blockers in rat and mice nociceptive neurons. Diabetologia. 44:1302–1309. DOI: 10.1007/s001250100642. PMID: 11692179. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0034780525&origin=inward.
16. Wei H, Zhao W, Wang YX, Pertovaara A. 2007; Pain-related behavior following REM sleep deprivation in the rat: influence of peripheral nerve injury, spinal glutamatergic receptors and nitric oxide. Brain Res. 1148:105–112. DOI: 10.1016/j.brainres.2007.02.040. PMID: 17368427. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=34247108104&origin=inward.
17. Zhang XY, Peng SY, Shen LP, Zhuang QX, Li B, Xie ST, Li QX, Shi MR, Ma TY, Zhang Q, Wang JJ, Zhu JN. 2020; Targeting presynaptic H3 heteroreceptor in nucleus accumbens to improve anxiety and obsessive-compulsive-like behaviors. Proc Natl Acad Sci U S A. 117:32155–32164. DOI: 10.1073/pnas.2008456117. PMID: 33257584. PMCID: PMC7749329. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85098470950&origin=inward.
18. Ahmad KA, Shoaib RM, Ahsan MZ, Deng MY, Ma L, Apryani E, Li XY, Wang YX. 2021; Microglial IL-10 and β-endorphin expression mediates gabapentinoids antineuropathic pain. Brain Behav Immun. 95:344–361. DOI: 10.1016/j.bbi.2021.04.007. PMID: 33862171. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85104994417&origin=inward.
19. He X, Li S, Liu B, Susperreguy S, Formoso K, Yao J, Kang J, Shi A, Birnbaumer L, Liao Y. 2017; Major contribution of the 3/6/7 class of TRPC channels to myocardial ischemia/reperfusion and cellular hypoxia/reoxygenation injuries. Proc Natl Acad Sci U S A. 114:E4582–E4591. DOI: 10.1073/pnas.1621384114. PMID: 28526717. PMCID: PMC5468654. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85020460703&origin=inward.
20. Chopra S, Giovanelli P, Alvarado-Vazquez PA, Alonso S, Song M, Sandoval TA, Chae CS, Tan C, Fonseca MM, Gutierrez S, Jimenez L, Subbaramaiah K, Iwawaki T, Kingsley PJ, Marnett LJ, Kossenkov AV, Crespo MS, Dannenberg AJ, Glimcher LH, Romero-Sandoval EA, et al. 2019; IRE1α-XBP1 signaling in leukocytes controls prostaglandin biosynthesis and pain. Science. 365:eaau6499. DOI: 10.1126/science.aau6499. PMID: 31320508. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85070059028&origin=inward.
21. Liu Y, Wang S, Wang Z, Ding M, Li X, Guo J, Han G, Zhao P. 2020; Dexmedetomidine alleviated endoplasmic reticulum stress via inducing ER-phagy in the spinal cord of neuropathic pain model. Front Neurosci. 14:90. DOI: 10.3389/fnins.2020.00090. PMID: 32184704. PMCID: PMC7058658. PMID: f4bd7024b782461c86ff5bb0357ca775. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85082558844&origin=inward.
22. Bandelow B. 2015; Generalized anxiety disorder and pain. Mod Trends Pharmacopsychiatry. 30:153–165. DOI: 10.1159/000435939. PMID: 26437036. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84945200857&origin=inward.
23. Seidl O, Frick E. DOI: 10.13109/zptm.2021.67.4.416. PMID: 34904551.
24. Yongjun Z, Tingjie Z, Xiaoqiu Y, Zhiying F, Feng Q, Guangke X, Jinfeng L, Fachuan N, Xiaohong J, Yanqing L. 2020; A survey of chronic pain in China. Libyan J Med. 15:1730550. DOI: 10.1080/19932820.2020.1730550. PMID: 32066339. PMCID: PMC7048183. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85079714095&origin=inward.
25. Yousuf MS, Maguire AD, Simmen T, Kerr BJ. 2020; Endoplasmic reticulum-mitochondria interplay in chronic pain: the calcium connection. Mol Pain. 16:1744806920946889. DOI: 10.1177/1744806920946889. PMID: 32787562. PMCID: PMC7427143. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85089433712&origin=inward.
26. Ossipov MH, Morimura K, Porreca F. 2014; Descending pain modulation and chronification of pain. Curr Opin Support Palliat Care. 8:143–151. DOI: 10.1097/SPC.0000000000000055. PMID: 24752199. PMCID: PMC4301419. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84905855968&origin=inward.
27. Ma L, Peng S, Wei J, Zhao M, Ahmad KA, Chen J, Wang YX. 2021; Spinal microglial β-endorphin signaling mediates IL-10 and exenatide-induced inhibition of synaptic plasticity in neuropathic pain. CNS Neurosci Ther. 27:1157–1172. DOI: 10.1111/cns.13694. PMID: 34111331. PMCID: PMC8446220. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85107455814&origin=inward.
28. Nanou E, Catterall WA. 2018; Calcium channels, synaptic plasticity, and neuropsychiatric disease. Neuron. 98:466–481. DOI: 10.1016/j.neuron.2018.03.017. PMID: 29723500. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85046171314&origin=inward.
29. Schmaul S, Hanuscheck N, Bittner S. 2021; Astrocytic potassium and calcium channels as integrators of the inflammatory and ischemic CNS microenvironment. Biol Chem. 402:1519–1530. DOI: 10.1515/hsz-2021-0256. PMID: 34455729. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85114429844&origin=inward.
30. Tratnjek L, Živin M, Glavan G. 2017; Synaptotagmin 7 and SYNCRIP proteins are ubiquitously expressed in the rat brain and co-localize in Purkinje neurons. J Chem Neuroanat. 79:12–21. DOI: 10.1016/j.jchemneu.2016.10.002. PMID: 27771350. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84997769567&origin=inward.
31. Kohno T, Kumamoto E, Higashi H, Shimoji K, Yoshimura M. 1999; Actions of opioids on excitatory and inhibitory transmission in substantia gelatinosa of adult rat spinal cord. J Physiol. 518(Pt 3):803–813. DOI: 10.1111/j.1469-7793.1999.0803p.x. PMID: 10420016. PMCID: PMC2269468. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0033178720&origin=inward.
32. van Vliet AR, Giordano F, Gerlo S, Segura I, Van Eygen S, Molenberghs G, Rocha S, Houcine A, Derua R, Verfaillie T, Vangindertael J, De Keersmaecker H, Waelkens E, Tavernier J, Hofkens J, Annaert W, Carmeliet P, Samali A, Mizuno H, Agostinis P. 2017; The ER stress sensor PERK coordinates ER-plasma membrane contact site formation through interaction with Filamin-A and F-actin remodeling. Mol Cell. 65:885–899.e6. DOI: 10.1016/j.molcel.2017.01.020. PMID: 28238652. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85013498608&origin=inward.
33. Gorudko IV, Sokolov AV, Shamova EV, Grudinina NA, Drozd ES, Shishlo LM, Grigorieva DV, Bushuk SB, Bushuk BA, Chizhik SA, Cherenkevich SN, Vasilyev VB, Panasenko OM. 2013; Myeloperoxidase modulates human platelet aggregation via actin cytoskeleton reorganization and store-operated calcium entry. Biol Open. 2:916–923. DOI: 10.1242/bio.20135314. PMID: 24143278. PMCID: PMC3773338. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84979266672&origin=inward.
34. Pelucchi S, Stringhi R, Marcello E. 2020; Dendritic spines in Alzheimer's disease: how the actin cytoskeleton contributes to synaptic failure. Int J Mol Sci. 21:908. DOI: 10.3390/ijms21030908. PMID: 32019166. PMCID: PMC7036943. PMID: 40ac0c877c2a449aac46cb3b3a10c2b9. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85078970187&origin=inward.
35. Katanosaka K, Banik RK, Giron R, Higashi T, Tominaga M, Mizumura K. 2008; Contribution of TRPV1 to the bradykinin-evoked nociceptive behavior and excitation of cutaneous sensory neurons. Neurosci Res. 62:168–175. DOI: 10.1016/j.neures.2008.08.004. PMID: 18789982. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=52949088257&origin=inward.
36. Park CK, Lü N, Xu ZZ, Liu T, Serhan CN, Ji RR. 2011; Resolving TRPV1- and TNF-α-mediated spinal cord synaptic plasticity and inflammatory pain with neuroprotectin D1. J Neurosci. 31:15072–15085. DOI: 10.1523/JNEUROSCI.2443-11.2011. PMID: 22016541. PMCID: PMC3202339. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=80054749697&origin=inward.
37. Weber JP, Toft-Bertelsen TL, Mohrmann R, Delgado-Martinez I, Sørensen JB. 2014; Synaptotagmin-7 is an asynchronous calcium sensor for synaptic transmission in neurons expressing SNAP-23. PLoS One. 9:e114033. DOI: 10.1371/journal.pone.0114033. PMID: 25422940. PMCID: PMC4244210. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84912567355&origin=inward.
38. Wang QW, Lu SY, Liu YN, Chen Y, Wei H, Shen W, Chen YF, Fu CL, Wang YH, Dai A, Huang X, Gage FH, Xu Q, Yao J. 2020; Synaptotagmin-7 deficiency induces mania-like behavioral abnormalities through attenuating GluN2B activity. Proc Natl Acad Sci U S A. 117:31438–31447. Erratum in: Proc Natl Acad Sci U S A. 2021;118:e2111933118. DOI: 10.1073/pnas.2016416117. PMID: 33229564. PMCID: PMC7733786. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85097574845&origin=inward.
39. Chen J, Li L, Chen SR, Chen H, Xie JD, Sirrieh RE, MacLean DM, Zhang Y, Zhou MH, Jayaraman V, Pan HL. 2018; The α2δ-1-NMDA receptor complex is critically involved in neuropathic pain development and gabapentin therapeutic actions. Cell Rep. 22:2307–2321. Erratum in: Cell Rep. 2022;38:110308. DOI: 10.1016/j.celrep.2018.02.021. PMID: 29490268. PMCID: PMC5873963. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85042589748&origin=inward.
40. Binning W, Hogan-Cann AE, Yae Sakae D, Maksoud M, Ostapchenko V, Al-Onaizi M, Matovic S, Lu WY, Prado MAM, Inoue W, Prado VF. 2020; Chronic hM3Dq signaling in microglia ameliorates neuroinflammation in male mice. Brain Behav Immun. 88:791–801. DOI: 10.1016/j.bbi.2020.05.041. PMID: 32434046. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85085033533&origin=inward.
41. Hong JS, Cho JH, Choi IS, Lee MG, Jang IS. 2013; Pregnenolone sulfate modulates glycinergic transmission in rat medullary dorsal horn neurons. Eur J Pharmacol. 712:30–38. DOI: 10.1016/j.ejphar.2013.04.039. PMID: 23665111. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84878245302&origin=inward.
42. Gao R, Gao X, Xia J, Tian Y, Barrett JE, Dai Y, Hu H. 2013; Potent analgesic effects of a store-operated calcium channel inhibitor. Pain. 154:2034–2044. DOI: 10.1016/j.pain.2013.06.017. PMID: 23778292. PMCID: PMC3778044. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84884286622&origin=inward.
43. Jin H, Sun YT, Guo GQ, Chen DL, Li YJ, Xiao GP, Li XN. 2017; Spinal TRPC6 channels contributes to morphine-induced antinociceptive tolerance and hyperalgesia in rats. Neurosci Lett. 639:138–145. DOI: 10.1016/j.neulet.2016.12.062. PMID: 28034782. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85008426299&origin=inward.
44. Hsieh MC, Ho YC, Lai CY, Chou D, Chen GD, Lin TB, Peng HY. 2018; Spinal TNF-α impedes Fbxo45-dependent Munc13-1 ubiquitination to mediate neuropathic allodynia in rats. Cell Death Dis. 9:811. DOI: 10.1038/s41419-018-0859-4. PMID: 30042425. PMCID: PMC6057957. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85050587268&origin=inward.
45. Yu T, Zhang X, Shi H, Tian J, Sun L, Hu X, Cui W, Du D. 2019; P2Y12 regulates microglia activation and excitatory synaptic transmission in spinal lamina II neurons during neuropathic pain in rodents. Cell Death Dis. 10:165. DOI: 10.1038/s41419-019-1425-4. PMID: 30778044. PMCID: PMC6379416. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85061723320&origin=inward.
46. Zhang SB, Lin SY, Liu M, Liu CC, Ding HH, Sun Y, Ma C, Guo RX, Lv YY, Wu SL, Xu T, Xin WJ. 2019; CircAnks1a in the spinal cord regulates hypersensitivity in a rodent model of neuropathic pain. Nat Commun. 10:4119. DOI: 10.1038/s41467-019-12049-0. PMID: 31511520. PMCID: PMC6739334. PMID: b3ac0bb11f9b43cf9fde25c82e822ad5. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85072130530&origin=inward.
47. Basbaum AI, Bautista DM, Scherrer G, Julius D. 2009; Cellular and molecular mechanisms of pain. Cell. 139:267–284. DOI: 10.1016/j.cell.2009.09.028. PMID: 19837031. PMCID: PMC2852643. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=70349845440&origin=inward.
48. Hogea A, Shah S, Jones F, Carver CM, Hao H, Liang C, Huang D, Du X, Gamper N. 2021; Junctophilin-4 facilitates inflammatory signalling at plasma membrane-endoplasmic reticulum junctions in sensory neurons. J Physiol. 599:2103–2123. DOI: 10.1113/JP281331. PMID: 33569781. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85101929493&origin=inward.
49. Alkhani H, Ase AR, Grant R, O'Donnell D, Groschner K, Séguéla P. 2014; Contribution of TRPC3 to store-operated calcium entry and inflammatory transductions in primary nociceptors. Mol Pain. 10:43. DOI: 10.1186/1744-8069-10-43. PMID: 24965271. PMCID: PMC4118315. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84902929077&origin=inward.
50. Scremin E, Agostini M, Leparulo A, Pozzan T, Greotti E, Fasolato C. 2020; ORAI2 down-regulation potentiates SOCE and decreases Aβ42 accumulation in human neuroglioma cells. Int J Mol Sci. 21:5288. DOI: 10.3390/ijms21155288. PMID: 32722509. PMCID: PMC7432374. PMID: 2783470917f743429e39d353975dcaab. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85088812494&origin=inward.
51. Müller MS, Fox R, Schousboe A, Waagepetersen HS, Bak LK. 2014; Astrocyte glycogenolysis is triggered by store-operated calcium entry and provides metabolic energy for cellular calcium homeostasis. Glia. 62:526–534. DOI: 10.1002/glia.22623. PMID: 24464850. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84893758733&origin=inward.
52. Moreno C, Sampieri A, Vivas O, Peña-Segura C, Vaca L. 2012; STIM1 and Orai1 mediate thrombin-induced Ca2+ influx in rat cortical astrocytes. Cell Calcium. 52:457–467. DOI: 10.1016/j.ceca.2012.08.004. PMID: 22944608. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84870300641&origin=inward.
53. Arakawa N, Sakaue M, Yokoyama I, Hashimoto H, Koyama Y, Baba A, Matsuda T. 2000; KB-R7943 inhibits store-operated Ca2+ entry in cultured neurons and astrocytes. Biochem Biophys Res Commun. 279:354–357. DOI: 10.1006/bbrc.2000.3968. PMID: 11118291. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0034694825&origin=inward.
54. Steinbeck JA, Henke N, Opatz J, Gruszczynska-Biegala J, Schneider L, Theiss S, Hamacher N, Steinfarz B, Golz S, Brüstle O, Kuznicki J, Methner A. 2011; Store-operated calcium entry modulates neuronal network activity in a model of chronic epilepsy. Exp Neurol. 232:185–194. DOI: 10.1016/j.expneurol.2011.08.022. PMID: 21906591. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=80055007992&origin=inward.
55. Skibinska-Kijek A, Wisniewska MB, Gruszczynska-Biegala J, Methner A, Kuznicki J. 2009; Immunolocalization of STIM1 in the mouse brain. Acta Neurobiol Exp (Wars). 69:413–428. Erratum in: Acta Neurobiol Exp (Wars). 2010;70:115. PMID: 20048759. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=74549201582&origin=inward.
56. Hartmann J, Karl RM, Alexander RP, Adelsberger H, Brill MS, Rühlmann C, Ansel A, Sakimura K, Baba Y, Kurosaki T, Misgeld T, Konnerth A. 2014; STIM1 controls neuronal Ca²+ signaling, mGluR1-dependent synaptic transmission, and cerebellar motor behavior. Neuron. 82:635–644. DOI: 10.1016/j.neuron.2014.03.027. PMID: 24811382. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84899806474&origin=inward.
57. Briggs MD, Dennis EP, Dietmar HF, Pirog KA. 2020; New developments in chondrocyte ER stress and related diseases. F1000Res. 9:F1000 Faculty Rev-290. DOI: 10.12688/f1000research.22275.1. PMID: 32399188. PMCID: PMC7194456. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85084615447&origin=inward.
58. Zhang IX, Ren J, Vadrevu S, Raghavan M, Satin LS. 2020; ER stress increases store-operated Ca2+ entry (SOCE) and augments basal insulin secretion in pancreatic beta cells. J Biol Chem. 295:5685–5700. DOI: 10.1074/jbc.RA120.012721. PMID: 32179650. PMCID: PMC7186166. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85083761043&origin=inward.
59. O'Brien PD, Hinder LM, Sakowski SA, Feldman EL. 2014; ER stress in diabetic peripheral neuropathy: a new therapeutic target. Antioxid Redox Signal. 21:621–633. DOI: 10.1089/ars.2013.5807. PMID: 24382087. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84898816890&origin=inward.
60. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, Abeliovich H, Abildgaard MH, Abudu YP, Acevedo-Arozena A, Adamopoulos IE, Adeli K, Adolph TE, Adornetto A, Aflaki E, Agam G, Agarwal A, Aggarwal BB, Agnello M, Agostinis P, et al. 2021; Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy. 17:1–382. DOI: 10.1080/15548627.2020.1797280. PMID: 33634751. PMCID: PMC7996087. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85102619204&origin=inward.
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr