3. Ahmed WM, Troczynski T, McCullagh AP, Wyatt CCL, Carvalho RM. 2019; The influence of altering sintering protocols on the optical and mechanical properties of zirconia: A review. J Esthet Restor Dent. 31:423–30. DOI:
10.1111/jerd.12492. PMID:
31140674.
Article
4. Schweiger J, Kieschnick A. 2017. CAD/CAM in digital dentistry. DaehanNarae;Seoul: p. 91–108. DOI:
10.1111/jerd.12492.
7. Lebon N, Tapie L, Vennat E, Mawussi B. 2019; A computer-aided tool to predict dental crown prosthesis surface integrity after milling. Comput Aided Des Appl. 16:894–903. DOI:
10.14733/cadaps.2019.894-903.
Article
8. Benoit A, Issaoui H, Lebon N. 2020; Impact of machining process on the flexural strength of CAD/CAM blocks for dental restorations. Comput Methods Biomech Biomed Engin. 23:S31–2. DOI:
10.1080/10255842.2020.1811501.
Article
9. Lebon N, Tapie L, Vennat E, Mawussi B. 2015; Influence of CAD/CAM tool and material on tool wear and roughness of dental prostheses after milling. J Prosthet Dent. 114:236–47. DOI:
10.1016/j.prosdent.2014.12.021. PMID:
25957240.
Article
10. Burgess JO. 2018; Zirconia: The material, its evolution, and composition. Compend Contin Educ Dent. 39:4–8. PMID:
30299108.
11. Saridag S, Tak O, Alniacik G. 2013; Basic properties and types of zirconia: An overview. World J Stomatol. 2:40–7. DOI:
10.5321/wjs.v2.i3.40.
Article
12. Michailova M, Elsayed A, Fabel G, Edelhoff D, Zylla IM, Stawarczyk B. 2020; Comparison between novel strength-gradient and color-gradient multilayered zirconia using conventional and high-speed sintering. J Mech Behav Biomed Mater. 111:103977. DOI:
10.1016/j.jmbbm.2020.103977. PMID:
32799133.
Article
13. Rosentritt M, Preis V, Schmid A, Strasser T. 2022; Multilayer zirconia: Influence of positioning within blank and sintering conditions on the in vitro performance of 3-unit fixed partial dentures. J Prosthet Dent. 127:141–5. DOI:
10.1016/j.prosdent.2020.11.009. PMID:
33386137.
14. Suzuki S, Katsuta Y, Ueda K, Watanabe F. 2020; Marginal and internal fit of three-unit zirconia fixed dental prostheses: Effects of prosthesis design, cement space, and zirconia type. J Prosthodont Res. 64:460–7. DOI:
10.1016/j.jpor.2019.12.005. PMID:
32276830.
Article
15. Ueda K, Watanabe F, Katsuta Y, Seto M, Ueno D, Hiroyasu K, Suzuki S, Erdelt K, Güth JF. 2021; Marginal and internal fit of three-unit fixed dental prostheses fabricated from translucent multicolored zirconia: Framework versus complete contour design. J Prosthet Dent. 125:340.e1–6. DOI:
10.1016/j.prosdent.2020.08.023. PMID:
33198991.
Article
16. Oghbaei M, Mirzaee O. 2010; Microwave versus conventional sintering: A review of fundamentals, advantages and applications. J Alloys Compounds. 494:175–89. DOI:
10.1016/j.jallcom.2010.01.068.
Article
17. Luz JN, Kaizer MDR, Ramos NC, Anami LC, Thompson VP, Saavedra G, Zhang Y. 2021; Novel speed sintered zirconia by microwave technology. Dent Mater. 37:875–81. DOI:
10.1016/j.dental.2021.02.026. PMID:
33715863.
Article
18. Lawson NC, Maharishi A. 2020; Strength and translucency of zirconia after high-speed sintering. J Esthet Restor Dent. 32:219–25. DOI:
10.1111/jerd.12524. PMID:
31515932.
Article
19. Stawarczyk B, Ozcan M, Hallmann L, Ender A, Mehl A, Hammerlet CH. 2013; The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio. Clin Oral Investig. 17:269–74. DOI:
10.1007/s00784-012-0692-6. PMID:
22358379.
Article
20. Grambow J, Wille S, Kern M. 2021; Impact of changes in sintering temperatures on characteristics of 4YSZ and 5YSZ. J Mech Behav Biomed Mater. 120:104586. DOI:
10.1016/j.jmbbm.2021.104586. PMID:
34044252.
Article
21. Too TDC, Inokoshi M, Nozaki K, Shimizubata M, Nakai H, Liu H, Minakuchi S. 2021; Influence of sintering conditions on translucency, biaxial flexural strength, microstructure, and low-temperature degradation of highly translucent dental zirconia. Dent Mater J. 40:1320–8. DOI:
10.4012/dmj.2020-448. PMID:
34193728.
Article
22. Kilinc H, Sanal FA. 2021; Effect of sintering and aging processes on the mechanical and optical properties of translucent zirconia. J Prosthet Dent. 126:129.e1–7. DOI:
10.1016/j.prosdent.2021.03.024. PMID:
33965239.
Article
23. Ebeid K, Wille S, Hamdy A, Salah T, El-Etreby A, Kern M. 2014; Effect of changes in sintering parameters on monolithic translucent zirconia. Dent Mater. 30:e419–24. DOI:
10.1016/j.dental.2014.09.003. PMID:
25262211.
Article
24. Durkan R, Şimşek H, Deste Gökay G, Yilmaz B. 2021; Effects of sintering time on translucency and color of translucent zirconia ceramics. J Esthet Restor Dent. 33:654–9. DOI:
10.1111/jerd.12723. PMID:
33638578.
Article
26. Kaizer MR, Gierthmuehlen PC, Dos Santos MB, Cava SS, Zhang Y. 2017; Speed sintering translucent zirconia for chairside one-visit dental restorations: Optical, mechanical, and wear characteristics. Ceram Int. 43:10999–1005. DOI:
10.1016/j.ceramint.2017.05.141. PMID:
29097830. PMCID:
PMC5662116.
Article
27. Yang CC, Ding SJ, Lin TH, Yan M. 2020; Mechanical and optical properties evaluation of rapid sintered dental zirconia. Ceram Int. 46:26668–74. DOI:
10.1016/j.ceramint.2020.07.137.
Article
28. Asaad R, Aboushahba ME. 2020; Influence of different sintering protocols on translucency and fracture resistance of monolithic zirconia crowns. Egypt Dent J. 66:2649–60. DOI:
10.21608/edj.2020.42653.1257.
Article
29. Kim KB, Kim JH, Lee KW. 2009; The influence of microwave sintering process on the adaptation of CAD/CAM zirconia core. J Dent Rehabil Appl Sci. 25:95–107.
30. Monaco C, Prete F, Leonelli C, Esposito L, Tucci A. 2015; Microstructural study of microwave sintered zirconia for dental applications. Ceram Int. 41:1255–61. DOI:
10.1016/j.ceramint.2014.09.055.
Article
31. Ramesh S, Zulkifli NI, Tan CY, Wong YH, Tarlochan F, Ramesh S, Teng W, Sopyan I, Bang LT, Sarhan AAD. 2018; Comparison between microwave and conventional sintering on the properties and microstructural evolution of tetragonal zirconia. Ceram Int. 44:8922–7. DOI:
10.1016/j.ceramint.2018.02.086.
Article
32. Cokic SM, Vleugels J, Van Meerbeek B, Camargo B, Willems E, Li M, Zhang F. 2020; Mechanical properties, aging stability and translucency of speed-sintered zirconia for chairside restorations. Dent Mater. 36:959–72. DOI:
10.1016/j.dental.2020.04.026. PMID:
32493658.
Article
33. Liu H, Inokoshi M, Nozaki K, Shimizubata M, Nakai H, Cho Too TD, Minakuchi S. 2022; Influence of high-speed sintering protocols on translucency, mechanical properties, microstructure, crystallography, and low-temperature degradation of highly translucent zirconia. Dent Mater. 38:451–68. DOI:
10.1016/j.dental.2021.12.028. PMID:
34961644.
Article
34. Ahmed WM, Abdallah MN, McCullagh AP, Wyatt CCL, Troczynski T, Carvalho RM. 2019; Marginal discrepancies of monolithic zirconia crowns: The influence of preparation designs and sintering techniques. J Prosthodont. 28:288–98. DOI:
10.1111/jopr.13021. PMID:
30656786.
Article
35. Nakamura T, Nakano Y, Usami H, Okamura S, Wakabayashi K, Yatani H. 2020; In vitro investigation of fracture load and aging resistance of high-speed sintered monolithic tooth-borne zirconia crowns. J Prosthodont Res. 64:182–7. DOI:
10.1016/j.jpor.2019.07.003. PMID:
31699614.
Article
36. Elisa Kauling A, Güth JF, Erdelt K, Edelhoff D, Keul C. 2020; Influence of speed sintering on the fit and fracture strength of 3-unit monolithic zirconia fixed partial dentures. J Prosthet Dent. 124:380–6. DOI:
10.1016/j.prosdent.2019.09.003. PMID:
31780110.
Article