Korean J Pain.  2022 Oct;35(4):413-422. 10.3344/kjp.2022.35.4.413.

Medial prefrontal cortex nitric oxide modulates neuropathic pain behavior through mu opioid receptors in rats

Affiliations
  • 1DVM Graduate, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
  • 2Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
  • 3Division of Anatomy, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran

Abstract

Background
The neocortex, including the medial prefrontal cortex (mPFC), contains many neurons expressing nitric oxide synthase (NOS). In addition, increasing evidence shows that the nitric oxide (NO) and opioid systems interact in the brain. However, there have been no studies on the interaction of the opioid and NO systems in the mPFC. The objective of this study was to investigate the effects of administrating L-arginine (L-Arg, a precursor of NO) and N(gamma)-nitro-L-arginine methyl ester (L-NAME, an inhibitor of NOS) into the mPFC for neuropathic pain in rats. Also, we used selective opioid receptor antagonists to clarify the possible participation of the opioid mechanism.
Methods
Complete transection of the peroneal and tibial branches of the sciatic nerve was applied to induce neuropathic pain, and seven days later, the mPFC was cannulated bilaterally. The paw withdrawal threshold fifty percent (50% PWT) was recorded on the 14th day.
Results
Microinjection of L-Arg (2.87, 11.5 and 45.92 nmol per 0.25 µL) increased 50% PWT. L-NAME (17.15 nmol per 0.25 µL) and naloxonazine (an antagonist of mu opioid receptors, 1.54 nmol per 0.25 µL) inhibited anti-allodynia induced by LArg (45.92 nmol per 0.25 µL). Naltrindole (a delta opioid receptor antagonist, 2.45 nmol per 0.25 µL) and nor-binaltorphimine (a kappa opioid receptor antagonist, 1.36 nmol per 0.25 µL) were unable to prevent L-Arg (45.92 nmol per 0.25 µL)-induced antiallodynia.
Conclusions
Our results indicate that the NO system in the mPFC regulates neuropathic pain. Mu opioid receptors of this area might participate in pain relief caused by L-Arg.

Keyword

Arginine; Hyperalgesia; Pain; Prefrontal Cortex; Narcotic Antagonists; Nitric Oxide; Sciatic Nerve; Rats

Figure

  • Fig. 1 The microinjection schedule and study timeline used in this study. On day 1, rats underwent spared nerve injury (SNI) surgery. On day 7, medial prefrontal cortex (mPFC) on both sides of the brain was cannulated. Paw withdrawal threshold fifty percentage and locomotor behavior were recorded on the 14th and 20th day, respectively. Intra-mPFC microinjections of L-arginine and antagonists were performed at 6 and 3 minutes before allodynia recording, respectively. Fifteen minutes before, and on 5, 25, 45 and 65 minutes after infusion of drugs mechanical allodynia was evaluated. On day 20, the brains were separated for tip of cannulas verification.

  • Fig. 2 Entry point of microinjection cannulas on the brain surface (white arrows, A) and the cannulas tip (white arrows, B, left) in the medial prefrontal cortex (mPFC). (B, right) shows the rat mPFC. Main sub-regions of the mPFC, the infralimbic (IL) and prelimbic (PrL) cortices have also been shown. Revised from Paxinos and Watson (The rat brain in stereotaxic coordinates; 2007) [20] with original copyright holder’s permission.

  • Fig. 3 The effects of normal saline (NS) and L-arginine (L-Arg) infusion into medial prefrontal cortex (mPFC) on spared nerve injury (SNI) induced mechanical allodynia. Values represent the mean ± SEM (n = 6 animals per group). A three-minute time interval before recordings of mechanical allodynia was used to microinject saline and L-Arg. (A) The paw withdrawal threshold fifty percent (50% PWT) change before and after drugs infusion. Different letters represent significant differences (P < 0.001, two way ANOVA and Bonferroni post hoc tests) for all time-points after microinjections of L-Arg at doses of 2.87, 11.5, and 45.92 nmol compared with NS group in SNI rats. (B) Related area under the curve (AUC) of mechanical allodynia after microinjection of NS and L-Arg. Different letters represent significant differences (P < 0.001) using one way ANOVA and Tukey’s post hoc tests. (C) Dose-response curve of L-Arg on SNI-induced allodynia. LA: L-Arg, SEM: standard error of the mean, ANOVA: analysis of variance.

  • Fig. 4 The effects of N(gamma)-nitro-L-arginine methyl ester (L-NAME) alone, and prior to L-arginine (L-Arg, 45.92 nmol) microinjections into medial prefrontal cortex (mPFC) on spared nerve injury (SNI) induced mechanical allodynia. Values represent the mean ± SEM (n = 6 animals per group). Microinjection of L-Arg and L-NAME was performed 3 and 6 minutes before mechanical allodynia recordings, sequentially. (A) The paw withdrawal threshold fifty percent (50% PWT) change before and after drugs infusion. Different letters represent significant differences (P < 0.001, two way ANOVA and Bonferroni post hoc tests) for all time-points after microinjections of L-NAME (17.15 nmol) prior to L-Arg (45.92 nmol) compared with only L-Arg (45.92 nmol) treated group in SNI rats. (B) Related area under the curve (AUC) of mechanical allodynia after microinjection of normal saline (NS) and drugs. Different letters represent significant differences (P < 0.001) using one way ANOVA and Tukey’s post hoc tests. LA: L-Arg, SEM: standard error of the mean, ANOVA: analysis of variance.

  • Fig. 5 The effects of naloxonazine (Nlz), naltrindole (Ntd), and nor-binaltorphimine (Nbt) microinjections alone, and prior to L-arginine (L-Arg, 45.92 nmol) into medial prefrontal cortex (mPFC) on spared nerve injury (SNI) induced mechanical allodynia. Values represent the mean with their mean ± SEM (n = 6 animals per group). Opioid antagonists and L-Arg were microinjected 6 and 3 minutes before mechanical allodynia recordings, respectively. (A–C) The paw withdrawal threshold fifty percent (50% PWT) change before and after drugs infusion. Different letters represent significant differences (P < 0.001, two way ANOVA and Bonferroni post hoc tests) for all time-points after microinjections of Nlz (1.54 nmol) prior to L-Arg (45.92 nmol) compared with only L-Arg (45.92 nmol) treated group in SNI rats. (D) Related area under the curve (AUC) of mechanical allodynia after microinjection of normal saline (NS) and drugs. Different letters represent significant differences (P < 0.001) using one way ANOVA and Tukey’s post hoc tests. LA: L-Arg, SEM: standard error of the mean, ANOVA: analysis of variance.

  • Fig. 6 Effects of intra-medial prefrontal cortex microinjection of normal saline (NS), L-arginine (L-Arg), N(gamma)-nitro-L-arginine methyl ester (L-NAME) and opioid antagonists on photo beam breaks number in spared nerve injury (SNI) rats. Values represent the mean ± SEM (n = 6 animals per group). Similar letters indicate no significant differences among groups (one way ANOVA and Tukey’s post hoc tests). LA: L-Arg, Nlz: naloxonazine, Ntd: naltrindole, Nbt: nor-binaltorphimine, SEM: standard error of the mean, ANOVA: analysis of variance.


Reference

1. Cury Y, Picolo G, Gutierrez VP, Ferreira SH. 2011; Pain and analgesia: the dual effect of nitric oxide in the nociceptive system. Nitric Oxide. 25:243–54. DOI: 10.1016/j.niox.2011.06.004. PMID: 21723953. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=80053919221&origin=inward.
Article
2. Spiller F, Oliveira Formiga R, Fernandes da Silva Coimbra J, Alves-Filho JC, Cunha TM, Cunha FQ. 2019; Targeting nitric oxide as a key modulator of sepsis, arthritis and pain. Nitric Oxide. 89:32–40. DOI: 10.1016/j.niox.2019.04.011. PMID: 31051258. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85065091186&origin=inward.
Article
3. Toda N, Kishioka S, Hatano Y, Toda H. 2009; Modulation of opioid actions by nitric oxide signaling. Anesthesiology. 110:166–81. DOI: 10.1097/ALN.0b013e31819146a9. PMID: 19104184. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=58749107193&origin=inward.
Article
4. Lotfipour S, Smith MT. 2018; Morphine hyposensitivity in streptozotocin-diabetic rats: reversal by dietary l-arginine treatment. Clin Exp Pharmacol Physiol. 45:42–9. DOI: 10.1111/1440-1681.12855. PMID: 28925511. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85032259148&origin=inward.
Article
5. Salighedar R, Erfanparast A, Tamaddonfard E, Soltanalinejad F. 2019; Medial prefrontal cortex oxytocin-opioid receptors interaction in spatial memory processing in rats. Physiol Behav. 209:112599. DOI: 10.1016/j.physbeh.2019.112599. PMID: 31276680. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85068563144&origin=inward.
Article
6. Xu P, Chen A, Li Y, Xing X, Lu H. 2019; Medial prefrontal cortex in neurological diseases. Physiol Genomics. 51:432–42. DOI: 10.1152/physiolgenomics.00006.2019. PMID: 31373533. PMCID: PMC6766703. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85071788325&origin=inward.
Article
7. Qian Y, Wang Z, Zhou S, Zhao W, Yin C, Cao J, et al. 2020; MKP1 in the medial prefrontal cortex modulates chronic neuropathic pain via regulation of p38 and JNK1/2. Int J Neurosci. 130:643–52. DOI: 10.1080/00207454.2019.1667785. PMID: 31518515. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85084310971&origin=inward.
Article
8. Ong WY, Stohler CS, Herr DR. 2019; Role of the prefrontal cortex in pain processing. Mol Neurobiol. 56:1137–66. DOI: 10.1007/s12035-018-1130-9. PMID: 29876878. PMCID: PMC6400876. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85048062121&origin=inward.
Article
9. Kummer KK, Mitrić M, Kalpachidou T, Kress M. 2020; The medial prefrontal cortex as a central hub for mental comorbidities associated with chronic pain. Int J Mol Sci. 21:3440. DOI: 10.3390/ijms21103440. PMID: 32414089. PMCID: PMC7279227. PMID: 62fc386c77484ecfaecb885d534a537c. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85084787528&origin=inward.
Article
10. Tamaddonfard E, Erfanparast A, Salighedar R, Tamaddonfard S. 2020; Medial prefrontal cortex diclofenac-induced antinociception is mediated through GPR55, cannabinoid CB1, and mu-opioid receptors of this area and periaqueductal gray. Naunyn Schmiedebergs Arch Pharmacol. 393:371–9. DOI: 10.1007/s00210-019-01735-x. PMID: 31641818. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85074282153&origin=inward.
Article
11. Tu Y, Jung M, Gollub RL, Napadow V, Gerber J, Ortiz A, et al. 2019; Abnormal medial prefrontal cortex functional connectivity and its association with clinical symptoms in chronic low back pain. Pain. 160:1308–18. Erratum in: Pain 2020; 161: 230-1. DOI: 10.1097/j.pain.0000000000001507. PMID: 31107712. PMCID: PMC6530583. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85063572752&origin=inward.
Article
12. Scholz J, Finnerup NB, Attal N, Aziz Q, Baron R, Bennett MI, et al. 2019; The IASP classification of chronic pain for ICD-11: chronic neuropathic pain. Pain. 160:53–9. DOI: 10.1097/j.pain.0000000000001365. PMID: 30586071. PMCID: PMC6310153. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85056353013&origin=inward.
Article
13. Jensen TS, Finnerup NB. 2014; Allodynia and hyperalgesia in neuropathic pain: clinical manifestations and mechanisms. Lancet Neurol. 13:924–35. DOI: 10.1016/S1474-4422(14)70102-4. PMID: 25142459. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84906076303&origin=inward.
Article
14. Challa SR. 2015; Surgical animal models of neuropathic pain: pros and cons. Int J Neurosci. 125:170–4. DOI: 10.3109/00207454.2014.922559. PMID: 24831263. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84924227883&origin=inward.
Article
15. Vila-Verde C, Marinho AL, Lisboa SF, Guimarães FS. 2016; Nitric oxide in the prelimbic medial prefrontal cortex is involved in the anxiogenic-like effect induced by acute restraint stress in rats. Neuroscience. 320:30–42. DOI: 10.1016/j.neuroscience.2016.01.040. PMID: 26812037. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84957922299&origin=inward.
Article
16. Liu W, Li Q, Ye B, Cao H, Shen F, Xu Z, et al. 2020; Repeated nitrous oxide exposure exerts antidepressant-like effects through neuronal nitric oxide synthase activation in the medial prefrontal cortex. Front Psychiatry. 11:837. DOI: 10.3389/fpsyt.2020.00837. PMID: 33088274. PMCID: PMC7495238. PMID: 33bc10b3f8184aaf97f3b1e27172d0a2. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85091074996&origin=inward.
Article
17. Liang HY, Chen ZJ, Xiao H, Lin YH, Hu YY, Chang L, et al. 2020; nNOS-expressing neurons in the vmPFC transform pPVT-derived chronic pain signals into anxiety behaviors. Nat Commun. 11:2501. DOI: 10.1038/s41467-020-16198-5. PMID: 32427844. PMCID: PMC7237711. PMID: 8f56e6d3aab84052a130814cd8153048. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85084963733&origin=inward.
Article
18. Salimi S, Tamaddonfard E. 2019; Microinjection of histamine and its H3 receptor agonist and antagonist into the agranular insular cortex influence sensory and affective components of neuropathic pain in rats. Eur J Pharmacol. 857:172450. DOI: 10.1016/j.ejphar.2019.172450. PMID: 31202805. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85067298164&origin=inward.
Article
19. Taati M, Tamaddonfard E. 2018; Ventrolateral orbital cortex oxytocin attenuates neuropathic pain through periaqueductal gray opioid receptor. Pharmacol Rep. 70:577–83. DOI: 10.1016/j.pharep.2017.12.010. PMID: 29679881. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85045624471&origin=inward.
Article
20. Paxinos G, Watson C. 2007. The rat brain in stereotaxic coordinates. 6th ed. Elsevier;New York: DOI: 10.1016/j.pharep.2017.12.010. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85045624471&origin=inward.
21. Erfanparast A, Tamaddonfard E, Seyedin S. 2018; Involvement of central opiate receptors in modulation of centrally administered oxytocin-induced antinociception. Iran J Basic Med Sci. 21:1275–80. DOI: 10.22038/ijbms.2018.26302.6449. PMID: 30627372. PMCID: PMC6312677. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85055658537&origin=inward.
22. Karimi S, Karami M, Sahraei H, Rahimpour M. 2011; Reversal effect of intra-central amygdala microinjection of L-arginine on place aversion induced by naloxone in morphine conditioned rats. Iran Biomed J. 15:92–9. PMID: 21987115. PMCID: PMC3639744. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=82555188426&origin=inward.
23. Dixon WJ. 1980; Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol. 20:441–62. DOI: 10.1146/annurev.pa.20.040180.002301. PMID: 7387124. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0018867072&origin=inward.
Article
24. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. 1994; Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 53:55–63. DOI: 10.1016/0165-0270(94)90144-9. PMID: 7990513. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0027933374&origin=inward.
Article
25. Bastuji H, Frot M, Perchet C, Magnin M, Garcia-Larrea L. 2016; Pain networks from the inside: spatiotemporal analysis of brain responses leading from nociception to conscious perception. Hum Brain Mapp. 37:4301–15. DOI: 10.1002/hbm.23310. PMID: 27391083. PMCID: PMC6867521. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84978194822&origin=inward.
Article
26. Xu N, Tang XH, Pan W, Xie ZM, Zhang GF, Ji MH, et al. 2017; Spared nerve injury increases the expression of microglia M1 markers in the prefrontal cortex of rats and provokes depression-like behaviors. Front Neurosci. 11:209. DOI: 10.3389/fnins.2017.00209. PMID: 28458629. PMCID: PMC5394168. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85019059572&origin=inward.
Article
27. Parvardeh S, Sabetkasaei M, Moghimi M, Masoudi A, Ghafghazi S, Mahboobifard F. 2018; Role of L-arginine/NO/cGMP/KATP channel signaling pathway in the central and peripheral antinociceptive effect of thymoquinone in rats. Iran J Basic Med Sci. 21:625–33. DOI: 10.22038/IJBMS.2018.26255.6438. PMID: 29942454. PMCID: PMC6015243. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85046283684&origin=inward.
28. Fan W, Huang F, Wu Z, Zhu X, Li D, He H. 2012; The role of nitric oxide in orofacial pain. Nitric Oxide. 26:32–7. DOI: 10.1016/j.niox.2011.11.003. PMID: 22138296. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=83655172305&origin=inward.
Article
29. Miranda HF, Noriega V, Sierralta F, Sotomayor-Zárate R, Aguilera V, Prieto JC. 2020; Nitric oxide mediated dexketoprofen antinociception. J Exp Res. 8:16–22.
30. Fakhri S, Ahmadpour Y, Rezaei H, Kooshki L, Moradi SZ, Iranpanah A, et al. 2020; The antinociceptive mechanisms of melatonin: role of L-arginine/nitric oxide/cyclic GMP/KATP channel signaling pathway. Behav Pharmacol. 31:728–37. DOI: 10.1097/FBP.0000000000000579. PMID: 32925224. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85095861401&origin=inward.
Article
31. Mohammadi S, Fakhri S, Mohammadi-Farani A, Farzaei MH, Abbaszadeh F. 2021; Astaxanthin engages the l-arginine/NO/cGMP/KATP channel signaling pathway toward antinociceptive effects. Behav Pharmacol. 32:607–14. DOI: 10.1097/FBP.0000000000000655. PMID: 34561366. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85121948700&origin=inward.
Article
32. Zhuo M, Meller ST, Gebhart GF. 1993; Endogenous nitric oxide is required for tonic cholinergic inhibition of spinal mechanical transmission. Pain. 54:71–8. DOI: 10.1016/0304-3959(93)90101-T. PMID: 8397374. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0027253732&origin=inward.
Article
33. Iwamoto ET, Marion L. 1994; Pharmacological evidence that nitric oxide mediates the antinociception produced by muscarinic agonists in the rostral ventral medulla of rats. J Pharmacol Exp Ther. 269:699–708. PMID: 7514222. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0028245415&origin=inward.
34. Pan HL, Chen SR, Eisenach JC. 1998; Role of spinal NO in antiallodynic effect of intrathecal clonidine in neuropathic rats. Anesthesiology. 89:1518–23. DOI: 10.1097/00000542-199812000-00031. PMID: 9856728. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0032422242&origin=inward.
Article
35. Kawabata A, Fukuzumi Y, Fukushima Y, Takagi H. 1992; Antinociceptive effect of L-arginine on the carrageenin-induced hyperalgesia of the rat: possible involvement of central opioidergic systems. Eur J Pharmacol. 218:153–8. DOI: 10.1016/0014-2999(92)90159-2. PMID: 1327824. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0026741334&origin=inward.
Article
36. Roche AK, Cook M, Wilcox GL, Kajander KC. 1996; A nitric oxide synthesis inhibitor (L-NAME) reduces licking behavior and Fos-labeling in the spinal cord of rats during formalin-induced inflammation. Pain. 66:331–41. DOI: 10.1016/0304-3959(96)03025-4. PMID: 8880857. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0030220595&origin=inward.
Article
37. Oh M, Lee W, Go Y. 2006; The antinociceptive effect of intraperitoneally administered nonselective nitric oxide synthase inhibitor on the rat formalin test. Korean J Pain. 19:142–5. DOI: 10.3344/kjp.2006.19.2.142.
Article
38. Kampa M, Hatzoglou A, Notas G, Niniraki M, Kouroumalis E, Castanas E. 2001; Opioids are non-competitive inhibitors of nitric oxide synthase in T47D human breast cancer cells. Cell Death Differ. 8:943–52. DOI: 10.1038/sj.cdd.4400893. PMID: 11526449. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0034874425&origin=inward.
Article
39. Dietis N, Rowbotham DJ, Lambert DG. 2011; Opioid receptor subtypes: fact or artifact? Br J Anaesth. 107:8–18. DOI: 10.1093/bja/aer115. PMID: 21613279. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=79959423686&origin=inward.
Article
40. Chung E, Burke B, Bieber AJ, Doss JC, Ohgami Y, Quock RM. 2006; Dynorphin-mediated antinociceptive effects of L-arginine and SIN-1 (an NO donor) in mice. Brain Res Bull. 70:245–50. DOI: 10.1016/j.brainresbull.2006.05.008. PMID: 16861110. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33745970186&origin=inward.
Article
41. Javanmardi K, Parviz M, Sadr SS, Keshavarz M, Minaii B, Dehpour AR. 2005; Involvement of N-methyl-D-aspartate receptors and nitric oxide in the rostral ventromedial medulla in modulating morphine pain-inhibitory signals from the periaqueductal grey matter in rats. Clin Exp Pharmacol Physiol. 32:585–9. DOI: 10.1111/j.1440-1681.2005.04234.x. PMID: 16026519. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=22544467758&origin=inward.
Article
42. Hafeshjani ZK, Karami M, Biglarnia M. 2012; Nitric oxide in the hippocampal cortical area interacts with naloxone in inducing pain. Indian J Pharmacol. 44:443–7. DOI: 10.4103/0253-7613.99299. PMID: 23087502. PMCID: PMC3469944. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84865773679&origin=inward.
Article
43. Pol O. 2007; The involvement of the nitric oxide in the effects and expression of opioid receptors during peripheral inflammation. Curr Med Chem. 14:1945–55. DOI: 10.2174/092986707781368469. PMID: 17691937. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=34848885252&origin=inward.
Article
44. Hervera A, Negrete R, Leánez S, Martín-Campos JM, Pol O. 2011; Peripheral effects of morphine and expression of μ-opioid receptors in the dorsal root ganglia during neuropathic pain: nitric oxide signaling. Mol Pain. 7:25. DOI: 10.1186/1744-8069-7-25. PMID: 21486477. PMCID: PMC3094254. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=79953889325&origin=inward.
Article
45. Cadet P, Mantione K, Bilfinger TV, Stefano GB. 2001; Real-time RT-PCR measurement of the modulation of Mu opiate receptor expression by nitric oxide in human mononuclear cells. Med Sci Monit. 7:1123–8. PMID: 11687719. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0035215298&origin=inward.
46. Babey AM, Kolesnikov Y, Cheng J, Inturrisi CE, Trifilletti RR, Pasternak GW. 1994; Nitric oxide and opioid tolerance. Neuropharmacology. 33:1463–70. DOI: 10.1016/0028-3908(94)90050-7. PMID: 7532830. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0028051645&origin=inward.
Article
47. Heinzen EL, Booth RG, Pollack GM. 2005; Neuronal nitric oxide modulates morphine antinociceptive tolerance by enhancing constitutive activity of the mu-opioid receptor. Biochem Pharmacol. 69:679–88. DOI: 10.1016/j.bcp.2004.11.004. PMID: 15670586. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=12744277419&origin=inward.
48. Huang L, Wyse BD, Williams CM, Smith MT. 2019; Nitric oxide modulates μ-opioid receptor function in vitro. Clin Exp Pharmacol Physiol. 46:676–85. DOI: 10.1111/1440-1681.13091. PMID: 30933370. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85064493111&origin=inward.
Article
49. Cheriyan J, Sheets PL. 2018; Altered excitability and local connectivity of mPFC-PAG neurons in a mouse model of neuropathic pain. J Neurosci. 38:4829–39. DOI: 10.1523/JNEUROSCI.2731-17.2018. PMID: 29695413. PMCID: PMC6596022. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85049306424&origin=inward.
Article
Full Text Links
  • KJP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr