2. Shahmoradi L, Safdari R, Mirhosseini MM, Arji G, Jannat B, Abdar M. 2018; Predicting risk of acute appendicitis: a comparison of artificial neural network and logistic regression models predicting risk of acute appendicitis: a comparison of artificial neural network and logistic regression models. Acta Med Iran. 56:784–95.
21. Simonyan K, Zisserman A. 2014. Very deep convolutional networks for large-scale image recognition. arXiv. 1409.1556 [Preprint]. Available from:
https://doi.org/10.48550/arXiv.1409.1556. cited 2020 Apr 1.
22. Wanto A, Windarto AP, Hartama D, Parlina I. 2017; Use of binary sigmoid function and linear identity in artificial neural networks for forecasting population density. IJISTECH. 1:43–54. DOI:
10.30645/ijistech.v1i1.6.
25. Guyon I. 1997. A scaling law for the validation-set training-set size ratio. AT & T Bell Laboratories;Murray Hill: DOI:
10.30645/ijistech.v1i1.6.