1. Jung CH, Son JW, Kang S, Kim WJ, Kim HS, Kim HS, Seo M, Shin HJ, Lee SS, Jeong SJ, et al. Diabetes fact sheets in Korea, 2020: an appraisal of current status. Diabetes Metab J. 2021; 45:1–10. PMID:
33434426.
2. Chentli F, Azzoug S, Mahgoun S. Diabetes mellitus in elderly. Indian J Endocrinol Metab. 2015; 19:744–752. PMID:
26693423.
3. American Diabetes Association. 6. Glycemic targets. Diabetes Care. 2017; 40:S48–S56. PMID:
27979893.
4. Ma Y, Olendzki B, Chiriboga D, Hebert JR, Li Y, Li W, Campbell M, Gendreau K, Ockene IS. Association between dietary carbohydrates and body weight. Am J Epidemiol. 2005; 161:359–367. PMID:
15692080.
5. Frimpong EA, Oluwasanmi A, Baagyere EY, Zhiguang Q. A feedforward artificial neural network model for classification and detection of type 2 diabetes. J Phys Conf Ser. 2020; 1734:012026.
6. Soh DCK, Ng EYK, Jahmunah V, Oh SL, Tan RS, Acharya UR. Automated diagnostic tool for hypertension using convolutional neural network. Comput Biol Med. 2020; 126:103999. PMID:
32992139.
7. Zhang Q, Liu Y, Liu G, Zhao G, Qu Z, Yang W. An automatic diagnostic system based on deep learning, to diagnose hyperlipidemia. Diabetes Metab Syndr Obes. 2019; 12:637–645. PMID:
31118725.
8. Isin A, Ozdalili S. Cardiac arrhythmia detection using deep learning. Procedia Comput Sci. 2017; 120:268–275.
9. Wagner JM, Shimshak DG. Stepwise selection of variables in data envelopment analysis: procedures and managerial perspectives. Eur J Oper Res. 2007; 180:57–67.
10. Pizarroso J, Alfaya D, Portela J, Muñoz A. Metric tools for sensitivity analysis with applications to neural networks. arXiv. Forthcoming. 2023.
11. Nourani V, Fard MS. Sensitivity analysis of the artificial neural network outputs in simulation of the evaporation process at different climatologic regimes. Adv Eng Softw. 2012; 47:127–146.
12. Cao M, Alkayem NF, Pan L, Novák D. Advanced methods in neural networks-based sensitivity analysis with their applications in civil engineering. Rosa JLG, editor. Artificial Neural Networks. Rijeka: IntechOpen;2016. p. 335–353.
13. Delen D, Walker G, Kadam A. Predicting breast cancer survivability: a comparison of three data mining methods. Artif Intell Med. 2005; 34:113–127. PMID:
15894176.
14. Gevrey M, Dimopoulos I, Lek S. Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecol Modell. 2003; 160:249–264.
15. Borzouei S, Soltanian AR. Application of an artificial neural network model for diagnosing type 2 diabetes mellitus and determining the relative importance of risk factors. Epidemiol Health. 2018; 40:e2018007. PMID:
29529860.
16. Agliata A, Giordano D, Bardozzo F, Bottiglieri S, Facchiano A, Tagliaferri R. Machine learning as a support for the diagnosis of type 2 diabetes. Int J Mol Sci. 2023; 24:6775. PMID:
37047748.
17. Liu Q, Zhou Q, He Y, Zou J, Guo Y, Yan Y. Predicting the 2-year risk of progression from prediabetes to diabetes using machine learning among Chinese elderly adults. J Pers Med. 2022; 12:1055. PMID:
35887552.
18. World Health Organization. Classification of diabetes mellitus. Geneva: World Health Organization;2019.
19. Olaniyi EO, Adnan K. Onset diabetes diagnosis using artificial neural network. Int J Sci Eng Res. 2014; 5:754–759.
20. Ebrahim OA, Derbew G. Application of supervised machine learning algorithms for classification and prediction of type-2 diabetes disease status in Afar regional state, Northeastern Ethiopia 2021. Sci Rep. 2023; 13:7779. PMID:
37179444.
21. Niedbała G, Kurasiak-Popowska D, Piekutowska M, Wojciechowski T, Kwiatek M, Nawracała J. Application of artificial neural network sensitivity analysis to identify key determinants of harvesting date and yield of soybean (Glycine max [L.] merrill) cultivar augusta. Agriculture. 2022; 12:754.
22. Jeczmionek E, Kowalski PA. Input reduction of convolutional neural networks with global sensitivity analysis as a data-centric approach. Neurocomputing. 2022; 506:196–205.
23. Kowalski PA, Kusy M. Sensitivity analysis for probabilistic neural network structure reduction. IEEE Trans Neural Netw Learn Syst. 2018; 29:1919–1932. PMID:
28422668.
24. Franceschini S, Tancioni L, Lorenzoni M, Mattei F, Scardi M. An ecologically constrained procedure for sensitivity analysis of artificial neural networks and other empirical models. PLoS One. 2019; 14:e0211445. PMID:
30699204.
25. Choi SK, Park CG. The study of blood glucose level prediction model using ballistocardiogram and artificial intelligence. J Digit Converg. 2021; 19:257–269.
26. Singla V, Singla S, Feizi S, Jacobs D. Low curvature activations reduce overfitting in adversarial training. In : Proceedings of the IEEE/CVF International Conference on Computer Vision; 2021 Oct 11-17; Montreal, Canada. Scarsdale (NY): Computer Vision Foundation;2021. p. 16423–16433.
27. Güldoğan E, Zeynep T, Ayça A, Çolak C. Performance evaluation of different artificial neural network models in the classification of type 2 diabetes mellitus. J Cogn Syst. 2020; 5:23–32.
28. Ryu KS, Lee SW, Batbaatar E, Lee JW, Choi KS, Cha HS. A deep learning model for estimation of patients with undiagnosed diabetes. Appl Sci. 2020; 10:421.
29. Pizarroso J, Portela J, Muñoz A. NeuralSens: sensitivity analysis of neural networks. J Stat Softw. 2022; 102:1–36.