J Neurocrit Care.  2022 Jun;15(1):39-45. 10.18700/jnc.210035.

Hypomagnesemia as a prognostic marker of ischemic stroke

Affiliations
  • 1Anseong Public Health Center, Anseong, Korea
  • 2Division of Nephrology, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
  • 3Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
  • 4Department of Physical Medicine and Rehabilitation, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
  • 5Department of Ophthalmology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea

Abstract

Background
Hypomagnesemia is associated with stroke severity and increased in-hospital mortality in patients with acute ischemic stroke. This study aimed to assess whether serum magnesium concentration could predict functional outcomes of patients with acute ischemic stroke.
Methods
A total of 1,006 patients with acute ischemic stroke were analyzed. A serum magnesium level <1.6 mEq/L was defined as hypomagnesemia. Poor functional outcome was defined as a 3-month modified Rankin Scale (mRS) score ≥4. Multivariate logistic regression models were used to determine the effect of hypomagnesemia on the prognosis of ischemic stroke. Furthermore, patients were grouped according to severity and type of stroke. Within each group, subgroup analyses and interaction analyses were performed to determine whether the effect of hypomagnesemia on functional outcomes was still valid under different clinical conditions.
Results
The adjusted odds ratio (OR) for poor 3-month mRS in patients with hypomagnesemia was 2.15 (95% confidence interval [CI], 1.16–3.98; P=0.015). Hypomagnesemia was significantly associated with poor 3-month functional outcomes in patients with minor stroke (Initial National Institutes of Health Stroke Scale [NIHSS] score <5: adjusted OR, 4.20; 95% CI, 1.67–10.59; P=0.002). A significant interaction (P=0.047) was also observed between hypomagnesemia and the severity of the initial NIHSS. Although there was no significant interaction (P=0.053), hypomagnesemia was significantly associated with poor functional outcomes in the cardioembolic stroke group (adjusted OR, 3.41; 95% CI, 1.24–9.41; P=0.018).
Conclusion
Hypomagnesemia was a strong prognostic marker of poor functional outcome in certain subgroups, especially in patients with mild stroke severity and cardioembolic stroke.

Keyword

Magnesium; Ischemic stroke; Hypomagnesemia

Figure

  • Fig. 1. Flowchart of patients’ selection. TIA, transient ischemic attack; mRS, modified Rankin Scale; NIHSS, National Institutes of Health Stroke Scale.


Reference

1. Jahnen-Dechent W, Ketteler M. Magnesium basics. Clin Kidney J. 2012; 5(Suppl 1):i3–14.
Article
2. Fawcett WJ, Haxby EJ, Male DA. Magnesium: physiology and pharmacology. Br J Anaesth. 1999; 83:302–20.
Article
3. Marinov MB, Harbaugh KS, Hoopes PJ, Pikus HJ, Harbaugh RE. Neuroprotective effects of preischemia intraarterial magnesium sulfate in reversible focal cerebral ischemia. J Neurosurg. 1996; 85:117–24.
Article
4. Yang Y, Li Q, Ahmad F, Shuaib A. Survival and histological evaluation of therapeutic window of post-ischemia treatment with magnesium sulfate in embolic stroke model of rat. Neurosci Lett. 2000; 285:119–22.
Article
5. Muir KW, Lees KR, Ford I, Davis S; Intravenous Magnesium Efficacy in Stroke (IMAGES) Study Investigators. Magnesium for acute stroke (Intravenous Magnesium Efficacy in Stroke trial): randomised controlled trial. Lancet. 2004; 363:439–45.
Article
6. Saver JL, Starkman S, Eckstein M, Stratton SJ, Pratt FD, Hamilton S, et al. Prehospital use of magnesium sulfate as neuroprotection in acute stroke. N Engl J Med. 2015; 372:528–36.
Article
7. Ohira T, Peacock JM, Iso H, Chambless LE, Rosamond WD, Folsom AR. Serum and dietary magnesium and risk of ischemic stroke: the Atherosclerosis Risk in Communities Study. Am J Epidemiol. 2009; 169:1437–44.
Article
8. You S, Zhong C, Du H, Zhang Y, Zheng D, Wang X, et al. Admission low magnesium level is associated with in-hospital mortality in acute ischemic stroke patients. Cerebrovasc Dis. 2017; 44:35–42.
Article
9. Feng P, Niu X, Hu J, Zhou M, Liang H, Zhang Y, et al. Relationship of serum magnesium concentration to risk of short-term outcome of acute ischemic stroke. Blood Press. 2013; 22:297–301.
Article
10. Weisinger JR, Bellorín-Font E. Magnesium and phosphorus. Lancet. 1998; 352:391–6.
Article
11. Efficacy of endovascular therapy in acute ischemic stroke depends on age and clinical severity. Stroke. 2018; 49:1686–94.
12. VanderWeele TJ, Ding P. Sensitivity analysis in observational research: introducing the E-value. Ann Intern Med. 2017; 167:268–74.
Article
13. Khan AM, Lubitz SA, Sullivan LM, Sun JX, Levy D, Vasan RS, et al. Low serum magnesium and the development of atrial fibrillation in the community: the Framingham Heart Study. Circulation. 2013; 127:33–8.
Article
14. Adams HP Jr, Davis PH, Leira EC, Chang KC, Bendixen BH, Clarke WR, et al. Baseline NIH Stroke Scale score strongly predicts outcome after stroke: a report of the Trial of Org 10172 in Acute Stroke Treatment (TOAST). Neurology. 1999; 53:126–31.
Article
15. Geng HH, Wang Q, Li B, Cui BB, Jin YP, Fu RL, et al. Early neurological deterioration during the acute phase as a predictor of long-term outcome after first-ever ischemic stroke. Medicine (Baltimore). 2017; 96:e9068.
Article
16. Wolf FI, Trapani V, Simonacci M, Ferré S, Maier JA. Magnesium deficiency and endothelial dysfunction: is oxidative stress involved? Magnes Res. 2008; 21:58–64.
17. Shechter M, Merz CN, Rude RK, Paul Labrador MJ, Meisel SR, Shah PK, et al. Low intracellular magnesium levels promote platelet-dependent thrombosis in patients with coronary artery disease. Am Heart J. 2000; 140:212–8.
Article
18. Jee SH, Miller ER 3rd, Guallar E, Singh VK, Appel LJ, Klag MJ. The effect of magnesium supplementation on blood pressure: a meta-analysis of randomized clinical trials. Am J Hypertens. 2002; 15:691–6.
Article
19. de Jong G, van Raak L, Kessels F, Lodder J. Stroke subtype and mortality: a follow-up study in 998 patients with a first cerebral infarct. J Clin Epidemiol. 2003; 56:262–8.
20. Pinto A, Tuttolomondo A, Di Raimondo D, Fernandez P, Licata G. Risk factors profile and clinical outcome of ischemic stroke patients admitted in a Department of Internal Medicine and classified by TOAST classification. Int Angiol. 2006; 25:261–7.
21. Yokota C, Minematsu K, Hasegawa Y, Yamaguchi T. Long-term prognosis, by stroke subtypes, after a first-ever stroke: a hospital-based study over a 20-year period. Cerebrovasc Dis. 2004; 18:111–6.
Article
22. Skou JC, Butler KW, Hansen O. The effect of magnesium, ATP, P i , and sodium on the inhibition of the (Na + + K + )-activated enzyme system by g-strophanthin. Biochim Biophys Acta. 1971; 241:443–61.
23. Op't Hof T, Mackaay AJ, Bleeker WK, Jongsma HJ, Bouman LN. Differences between rabbit sinoatrial pacemakers in their response to Mg, Ca and temperature. Cardiovasc Res. 1983; 17:526–32.
24. DeCarli C, Sprouse G, LaRosa JC. Serum magnesium levels in symptomatic atrial fibrillation and their relation to rhythm control by intravenous digoxin. Am J Cardiol. 1986; 57:956–9.
Article
25. Arboix A, García-Eroles L, Massons J, Oliveres M. Predictive clinical factors of in-hospital mortality in 231 consecutive patients with cardioembolic cerebral infarction. Cerebrovasc Dis. 1998; 8:8–13.
Article
26. Cheng Z, Huang X, Muse FM, Xia L, Zhan Z, Lin X, et al. Low serum magnesium levels are associated with hemorrhagic transformation after thrombolysis in acute ischemic stroke. Front Neurol. 2020; 11:962.
Article
Full Text Links
  • JNC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr