Kidney Res Clin Pract.  2022 May;41(3):288-297. 10.23876/j.krcp.21.200.

Diagnosing metabolic acidosis in chronic kidney disease: importance of blood pH and serum anion gap

Affiliations
  • 1Department of Inter-Organ Communication Research in Kidney Diseases, Osaka University Graduate School of Medicine, Osaka, Japan
  • 2Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan

Abstract

Metabolic acidosis is one of the most common complications of chronic kidney disease (CKD). It is associated with the progression of CKD, and many other functional impairments. Until recently, only serum bicarbonate levels have been used to evaluate acid-base changes in patients with reduced kidney function. However, recent emerging evidence suggests that nephrologists should reevaluate the clinical approach for diagnosing metabolic acidosis in patients with CKD based on two perspectives; pH and anion gap. Biochemistry and physiology textbooks clearly indicate that blood pH is the most important acid-base parameter for cellular function. Therefore, it is important to determine if the prognostic impact of hypobicarbonatemia varies according to pH level. A recent cohort study of CKD patients showed that venous pH modified the association between a low bicarbonate level and the progression of CKD. Furthermore, acidosis with a high anion gap has recently been recognized as an important prognostic factor, because veverimer, a nonabsorbable hydrochloride-binding polymer, has been shown to improve kidney function and decrease the anion gap. Acidosis with high anion gap frequently develops in later stages of CKD. Therefore, the anion gap is a time-varying factor and renal function (estimated glomerular filtration rate) is a time-dependent confounder for the anion gap and renal outcomes. Recent analyses using marginal structural models showed that acidosis with a high anion gap was associated with a high risk of CKD. Based on these observations, reconsideration of the clinical approach to diagnosing and treating metabolic acidosis in CKD may be warranted.

Keyword

Blood pH; High anion gap acidosis; Marginal structural model; Metabolic acidosis; Respiratory compensation capacity
Full Text Links
  • KRCP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr