Int J Stem Cells.  2022 May;15(2):173-182. 10.15283/ijsc21042.

Single-Cell RNA Sequencing of Bone Marrow Mesenchymal Stem Cells from the Elderly People

Affiliations
  • 1Department of Orthopaedics, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
  • 2The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
  • 3Department of Orthopaedics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
  • 4Department of Outpatient, The First Retired Cadre Sanitarium of Beijing Garrison in Fengtai District, Beijing, China
  • 5School of Clinical Medicine, The Second Military Medical University, Shanghai, China

Abstract

Background and Objectives
Bone marrow mesenchymal stem cells (BMSCs) show considerable promise in regenerative medicine. Many studies demonstrated that BMSCs cultured in vitro were highly heterogeneous and composed of diverse cell subpopulations, which may be the basis of their multiple biological characteristics. However, the exact cell subpopulations that make up BMSCs are still unknown.
Methods and Results
In this study, we used single-cell RNA sequencing (scRNA-Seq) to divide 6,514 BMSCs into three clusters. The number and corresponding proportion of cells in clusters 1 to 3 were 3,766 (57.81%), 1,720 (26.40%), and 1,028 (15.78%). The gene expression profile and function of the cells in the same cluster were similar. The vast majority of cells expressed the markers defining BMSCs by flow cytometry and gene expression analysis. Each cluster had at least 20 differentially expressed genes (DEGs). We conducted Gene Ontology enrichment analysis on the top 20 DEGs of each cluster and found that the three clusters had different functions, which were related to self-renewal, multilineage differentiation and cytokine secretion, respectively. In addition, the function of the top 20 DEGs of each cluster was checked by the National Center for Biotechnology Information gene database to further verify our hypothesis.
Conclusions
This study indicated that scRNA-Seq can be used to divide BMSCs into different subpopulations, demon-strating the heterogeneity of BMSCs.

Keyword

Bone marrow mesenchymal stem cells; Single-cell RNA sequencing; Subpopulation; Heterogeneity

Figure

  • Fig. 1 Expression of BMSCs markers by flow cytometry analysis and scRNA-seq. (a) Expression of surface marker antigens of the BMSCs. (b) Expression patterns of characteristic marker genes were projected on the t-SNE plot. (c) Expression patterns of marker gene for early passage BMSCs, FGFR2, and late passage BMSCs, PLAT, were projected on the t-SNE plot. Each cell is coloured based on the expression level of the indicated marker gene.

  • Fig. 2 The barcode on the left of the green marker line is the valid cell, and the Barcode on the right is the background. The figure on the right of the marker line has a steep downward trend, indicating that the effective cells are well differentiated from the background. The intersection point between the marker line and the abscissa is the effective cell number.

  • Fig. 3 T-SNE projection of cells colored by clustering. Each dot in the figure represents a cell. The legend on the right is the name of the cluster. Different colors represent different clusters.

  • Fig. 4 Clustering heat map of top 20 DEGs corresponding to the three clusters. Each column in the figure represents a gene and each row represents a cluster. Each small area color in the heat map represents the average expression level of the corresponding gene in the cluster. As shown in the right legend, the color from red to blue represents the gene expression from high to low. Different clusters are distinguished by different colors in the first line.


Reference

References

1. Samsonraj RM, Raghunath M, Nurcombe V, Hui JH, van Wijnen AJ, Cool SM. 2017; Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem Cells Transl Med. 6:2173–2185. DOI: 10.1002/sctm.17-0129. PMID: 29076267. PMCID: PMC5702523.
Article
2. Hosseini S, Taghiyar L, Safari F, Baghaban Eslaminejad M. 2018; Regenerative medicine applications of mesenchymal stem cells. Adv Exp Med Biol. 1089:115–141. DOI: 10.1007/5584_2018_213. PMID: 29767289.
Article
3. Han ZC, Du WJ, Han ZB, Liang L. 2017; New insights into the heterogeneity and functional diversity of human mesenchymal stem cells. Biomed Mater Eng. 28(s1):S29–S45. DOI: 10.3233/BME-171622. PMID: 28372276.
4. Rennerfeldt DA, Van Vliet KJ. 2016; Concise review: when colonies are not clones: evidence and implications of intracolony heterogeneity in mesenchymal stem cells. Stem Cells. 34:1135–1141. DOI: 10.1002/stem.2296. PMID: 26840390.
Article
5. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A, Lao K, Surani MA. 2009; mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 6:377–382. DOI: 10.1038/nmeth.1315. PMID: 19349980.
Article
6. Yan KS, Janda CY, Chang J, Zheng GXY, Larkin KA, Luca VC, Chia LA, Mah AT, Han A, Terry JM, Ootani A, Roelf K, Lee M, Yuan J, Li X, Bolen CR, Wilhelmy J, Davies PS, Ueno H, von Furstenberg RJ, Belgrader P, Ziraldo SB, Ordonez H, Henning SJ, Wong MH, Snyder MP, Weissman IL, Hsueh AJ, Mikkelsen TS, Garcia KC, Kuo CJ. 2017; Non-equivalence of Wnt and R-spondin ligands during Lgr5 intestinal stem-cell self-renewal. Nature. 545:238–242. DOI: 10.1038/nature22313. PMID: 28467820. PMCID: PMC5641471.
Article
7. Wallrapp A, Riesenfeld SJ, Burkett PR, Abdulnour RE, Nyman J, Dionne D, Hofree M, Cuoco MS, Rodman C, Farouq D, Haas BJ, Tickle TL, Trombetta JJ, Baral P, Klose CSN, Mahlakõiv T, Artis D, Rozenblatt-Rosen O, Chiu IM, Levy BD, Kowalczyk MS, Regev A, Kuchroo VK. 2017; The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature. 549:351–356. DOI: 10.1038/nature24029. PMID: 28902842. PMCID: PMC5746044.
Article
8. Xiang S, Gao W, Peng H, Liu A, Ao Q, Yang M, Yu Y, Liu Y, Rong R. 2020; Standards of clinical-grade mesenchymal stromal cell preparation and quality control (2020 China Version). J Neurorestoratol. 8:197–216. DOI: 10.26599/JNR.2020.9040021.
Article
9. De Simone M, Rossetti G, Pagani M. 2019; Chromium 10× single-cell 3' mRNA sequencing of tumor-infiltrating lympho-cytes. Methods Mol Biol. 1979:87–110. DOI: 10.1007/978-1-4939-9240-9_7. PMID: 31028634.
Article
10. Tambe A, Pachter L. 2019; Barcode identification for single cell genomics. BMC Bioinformatics. 20:32. DOI: 10.1186/s12859-019-2612-0. PMID: 30654736. PMCID: PMC6337828. PMID: 451d82d819a24aa0ab7aa3244846e3f7.
Article
11. Kivioja T, Vähärautio A, Karlsson K, Bonke M, Enge M, Linnarsson S, Taipale J. 2011; Counting absolute numbers of molecules using unique molecular identifiers. Nat Methods. 9:72–74. DOI: 10.1038/nmeth.1778. PMID: 22101854.
Article
12. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. 2013; STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 29:15–21. DOI: 10.1093/bioinformatics/bts635. PMID: 23104886. PMCID: PMC3530905.
Article
13. Liu S, Stroncek DF, Zhao Y, Chen V, Shi R, Chen J, Ren J, Liu H, Bae HJ, Highfill SL, Jin P. 2019; Single cell sequencing reveals gene expression signatures associated with bone marrow stromal cell subpopulations and time in culture. J Transl Med. 17:23. DOI: 10.1186/s12967-018-1766-2. PMID: 30635013. PMCID: PMC6330466. PMID: 69f3b7086d1a4211b1e73dd4f5f2e7db.
Article
14. Yu D, Huber W, Vitek O. 2013; Shrinkage estimation of dispersion in Negative Binomial models for RNA-seq experiments with small sample size. Bioinformatics. 29:1275–1282. DOI: 10.1093/bioinformatics/btt143. PMID: 23589650. PMCID: PMC3654711.
Article
15. Robinson MD, McCarthy DJ, Smyth GK. 2010; edgeR: a Biocon-ductor package for differential expression analysis of digital gene expression data. Bioinformatics. 26:139–140. DOI: 10.1093/bioinformatics/btp616. PMID: 19910308. PMCID: PMC2796818.
Article
16. Huang H, Chen L, Mao G, Sharma HS. 2020; Clinical neurorestorative cell therapies: developmental process, current state and future prospective. J Neurorestoratol. 8:61–82. DOI: 10.26599/JNR.2020.9040009.
Article
17. Cox CS Jr, Hetz RA, Liao GP, Aertker BM, Ewing-Cobbs L, Juranek J, Savitz SI, Jackson ML, Romanowska-Pawliczek AM, Triolo F, Dash PK, Pedroza C, Lee DA, Worth L, Aisiku IP, Choi HA, Holcomb JB, Kitagawa RS. 2017; Treatment of severe adult traumatic brain injury using bone marrow mononuclear cells. Stem Cells. 35:1065–1079. DOI: 10.1002/stem.2538. PMID: 27800660. PMCID: PMC5367945.
Article
18. Khan H, Mafi P, Mafi R, Khan W. 2018; The effects of ageing on differentiation and characterisation of human mesenchymal stem cells. Curr Stem Cell Res Ther. 13:378–383. DOI: 10.2174/1574888X11666160429122527. PMID: 27133083.
Article
19. Oetjen KA, Lindblad KE, Goswami M, Gui G, Dagur PK, Lai C, Dillon LW, McCoy JP, Hourigan CS. 2018; Human bone marrow assessment by single-cell RNA sequencing, mass cytometry, and flow cytometry. JCI Insight. 3:e124928. DOI: 10.1172/jci.insight.124928. PMID: 30518681. PMCID: PMC6328018.
Article
20. Kim JA, Im KO, Park SN, Kwon JS, Kim SY, Oh K, Lee DS, Kim MK, Kim SW, Jang M, Lee G, Oh YM, Lee SD, Lee DS. 2015; Cytogenetic heterogeneity and their serial dynamic changes during acquisition of cytogenetic aberrations in cultured mesenchymal stem cells. Mutat Res. 777:60–68. DOI: 10.1016/j.mrfmmm.2015.04.003. PMID: 25974687.
Article
21. Zhang S, Wang JY, Li B, Yin F, Liu H. 2021; Single-cell transcriptome analysis of uncultured human umbilical cord mesenchymal stem cells. Stem Cell Res Ther. 12:25. DOI: 10.1186/s13287-020-02055-1. PMID: 33413643. PMCID: PMC7791785. PMID: bf5b4c1f56d0453b955bdaa39992b1f4.
Article
22. Wang J, Xia C, Pu M, Dai B, Yang X, Shang R, Yang Z, Zhang R, Tao K, Dou K. 2018; Silencing of CDCA5 inhibits cancer progression and serves as a prognostic biomarker for hepatocellular carcinoma. Oncol Rep. 40:1875–1884. DOI: 10.3892/or.2018.6579. PMID: 30015982. PMCID: PMC6111608.
Article
23. Yao Z, Zheng X, Lu S, He Z, Miao Y, Huang H, Chu X, Cai C, Zou F. 2019; Knockdown of FAM64A suppresses proliferation and migration of breast cancer cells. Breast Cancer. 26:835–845. DOI: 10.1007/s12282-019-00991-2. PMID: 31264076.
Article
24. Musa J, Aynaud MM, Mirabeau O, Delattre O, Grünewald TG. 2017; MYBL2 (B-Myb): a central regulator of cell proliferation, cell survival and differentiation involved in tumorigenesis. Cell Death Dis. 8:e2895. DOI: 10.1038/cddis.2017.244. PMID: 28640249. PMCID: PMC5520903.
Article
25. Giunta S, Funabiki H. 2017; Integrity of the human centromere DNA repeats is protected by CENP-A, CENP-C, and CENP-T. Proc Natl Acad Sci U S A. 114:1928–1933. DOI: 10.1073/pnas.1615133114. PMID: 28167779. PMCID: PMC5338446.
Article
26. Wang L, Zhang R, You X, Zhang H, Wei S, Cheng T, Cao Q, Wang Z, Chen Y. 2017; The steady-state level of CDK4 protein is regulated by antagonistic actions between PAQR4 and SKP2 and involved in tumorigenesis. J Mol Cell Biol. 9:409–421. DOI: 10.1093/jmcb/mjx028. PMID: 28992327.
Article
27. Soniat M, Cağatay T, Chook YM. 2016; Recognition elements in the histone H3 and H4 tails for seven different importins. J Biol Chem. 291:21171–21183. DOI: 10.1074/jbc.M116.730218. PMID: 27528606. PMCID: PMC5076525.
Article
28. Kimura A, Matsuda T, Sakai A, Murao N, Nakashima K. 2018; HMGB2 expression is associated with transition from a quiescent to an activated state of adult neural stem cells. Dev Dyn. 247:229–238. DOI: 10.1002/dvdy.24559. PMID: 28771884.
Article
29. Cheloufi S, Elling U, Hopfgartner B, Jung YL, Murn J, Ninova M, Hubmann M, Badeaux AI, Euong Ang C, Tenen D, Wesche DJ, Abazova N, Hogue M, Tasdemir N, Brumbaugh J, Rathert P, Jude J, Ferrari F, Blanco A, Fellner M, Wenzel D, Zinner M, Vidal SE, Bell O, Stadtfeld M, Chang HY, Almouzni G, Lowe SW, Rinn J, Wernig M, Aravin A, Shi Y, Park PJ, Penninger JM, Zuber J, Hochedlinger K. 2015; The histone chaperone CAF-1 safeguards somatic cell identity. Nature. 528:218–224. DOI: 10.1038/nature15749. PMID: 26659182. PMCID: PMC4866648.
Article
30. Kanawa M, Igarashi A, Fujimoto K, Higashi Y, Kurihara H, Sugiyama M, Saskianti T, Kato Y, Kawamoto T. 2018; Genetic markers can predict chondrogenic differentiation potential in bone marrow-derived mesenchymal stromal cells. Stem Cells Int. 2018:9530932. DOI: 10.1155/2018/9530932. PMID: 30405725. PMCID: PMC6199884.
Article
31. Zhang Y, Chen B, Li D, Zhou X, Chen Z. 2019; LncRNA NEAT1/miR-29b-3p/BMP1 axis promotes osteogenic differentiation in human bone marrow-derived mesenchymal stem cells. Pathol Res Pract. 215:525–531. DOI: 10.1016/j.prp.2018.12.034. PMID: 30638953.
Article
32. Narakornsak S, Aungsuchawan S, Pothacharoen P, Markmee R, Tancharoen W, Laowanitwattana T, Thaojamnong C, Peerapapong L, Boonma N, Tasuya W, Keawdee J, Poovachiranon N. 2017; Sesamin encouraging effects on chondrogenic differentiation of human amniotic fluid-derived mesenchymal stem cells. Acta Histochem. 119:451–461. DOI: 10.1016/j.acthis.2017.04.006. PMID: 28499502.
Article
33. Longo A, Tobiasch E, Luparello C. 2014; Type V collagen counteracts osteo-differentiation of human mesenchymal stem cells. Biologicals. 42:294–297. DOI: 10.1016/j.biologicals.2014.07.002. PMID: 25132375.
Article
34. Belambri SA, Rolas L, Raad H, Hurtado-Nedelec M, Dang PM, El-Benna J. 2018; NADPH oxidase activation in neutrophils: Role of the phosphorylation of its subunits. Eur J Clin Invest. 48 Suppl 2:e12951. DOI: 10.1111/eci.12951. PMID: 29757466.
Article
35. Maffioli E, Nonnis S, Angioni R, Santagata F, Calì B, Zanotti L, Negri A, Viola A, Tedeschi G. 2017; Proteomic analysis of the secretome of human bone marrow-derived mesenchymal stem cells primed by pro-inflammatory cytokines. J Proteomics. 166:115–126. DOI: 10.1016/j.jprot.2017.07.012. PMID: 28739509.
Article
36. Moraes LA, Ampomah PB, Lim LHK. 2018; Annexin A1 in inflammation and breast cancer: a new axis in the tumor microenvironment. Cell Adh Migr. 12:417–423. DOI: 10.1080/19336918.2018.1486143. PMID: 30122097. PMCID: PMC6363057.
Article
37. Akram KM, Samad S, Spiteri MA, Forsyth NR. 2013; Mesenchymal stem cells promote alveolar epithelial cell wound repair in vitro through distinct migratory and paracrine mechanisms. Respir Res. 14:9. DOI: 10.1186/1465-9921-14-9. PMID: 23350749. PMCID: PMC3598763.
Article
38. Krishnaswamy VR, Balaguru UM, Chatterjee S, Korrapati PS. 2017; Dermatopontin augments angiogenesis and modulates the expression of transforming growth factor beta 1 and integrin alpha 3 beta 1 in endothelial cells. Eur J Cell Biol. 96:266–275. DOI: 10.1016/j.ejcb.2017.02.007. PMID: 28336087.
Article
39. Watanabe S, Harayama M, Kanemura S, Sitia R, Inaba K. 2017; Structural basis of pH-dependent client binding by ERp44, a key regulator of protein secretion at the ER-Golgi interface. Proc Natl Acad Sci U S A. 114:E3224–E3232. DOI: 10.1073/pnas.1621426114. PMID: 28373561. PMCID: PMC5402435.
Article
40. Wang J, Lee J, Liem D, Ping P. 2017; HSPA5 Gene encoding Hsp70 chaperone BiP in the endoplasmic reticulum. Gene. 618:14–23. DOI: 10.1016/j.gene.2017.03.005. PMID: 28286085. PMCID: PMC5632570.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr