Int J Stem Cells.  2022 May;15(2):113-121. 10.15283/ijsc21122.

In Vivo Generation of Organs by Blastocyst Complementation: Advances and Challenges

Affiliations
  • 1Department of Basic Science, Biomedical Research Foundation of the Academy of Athens, Athens, Greece

Abstract

The ultimate goal of regenerative medicine is to replace damaged cells, tissues or whole organs, in order to restore their proper function. Stem cell related technologies promise to generate transplants from the patients’ own cells. Novel approaches such as blastocyst complementation combined with genome editing techniques open up new perspectives for organ replacement therapies. This review summarizes recent advances in the field and highlights the challenges that still remain to be addressed.

Keyword

Blastocyst complementation; Chimeras; Organ generation; Transplantation

Reference

References

1. Girlanda R. 2016; Deceased organ donation for transplantation: challenges and opportunities. World J Transplant. 6:451–459. DOI: 10.5500/wjt.v6.i3.451. PMID: 27683626. PMCID: PMC5036117.
Article
2. Dierickx D, Habermann TM. 2018; Post-transplantation lymphoproliferative disorders in adults. N Engl J Med. 378:549–562. DOI: 10.1056/NEJMra1702693. PMID: 29414277.
Article
3. De Vos J, Bouckenheimer J, Sansac C, Lemaître JM, Assou S. 2016; Human induced pluripotent stem cells: a disruptive innovation. Curr Res Transl Med. 64:91–96. DOI: 10.1016/j.retram.2016.04.001. PMID: 27316392.
Article
4. Karagiannis P, Eto K. 2016; Ten years of induced pluripotency: from basic mechanisms to therapeutic applications. Deve-lopment. 143:2039–2043. DOI: 10.1242/dev.138172. PMID: 27302394.
Article
5. Takahashi K, Yamanaka S. 2006; Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126:663–676. DOI: 10.1016/j.cell.2006.07.024. PMID: 16904174.
Article
6. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. 2007; Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131:861–872. DOI: 10.1016/j.cell.2007.11.019. PMID: 18035408.
Article
7. Vegas AJ, Veiseh O, Gürtler M, Millman JR, Pagliuca FW, Bader AR, Doloff JC, Li J, Chen M, Olejnik K, Tam HH, Jhunjhunwala S, Langan E, Aresta-Dasilva S, Gandham S, McGarrigle JJ, Bochenek MA, Hollister-Lock J, Oberholzer J, Greiner DL, Weir GC, Melton DA, Langer R, Anderson DG. 2016; Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat Med. 22:306–311. DOI: 10.1038/nm.4030. PMID: 26808346. PMCID: PMC4825868.
Article
8. Tolosa L, Caron J, Hannoun Z, Antoni M, López S, Burks D, Castell JV, Weber A, Gomez-Lechon MJ, Dubart-Kupperschmitt A. 2015; Transplantation of hESC-derived hepatocytes protects mice from liver injury. Stem Cell Res Ther. 6:246. DOI: 10.1186/s13287-015-0227-6. PMID: 26652177. PMCID: PMC4676869.
Article
9. Bellamy V, Vanneaux V, Bel A, Nemetalla H, Emmanuelle Boitard S, Farouz Y, Joanne P, Perier MC, Robidel E, Mandet C, Hagège A, Bruneval P, Larghero J, Agbulut O, Menasché P. 2015; Long-term functional benefits of human embryonic stem cell-derived cardiac progenitors embedded into a fibrin scaffold. J Heart Lung Transplant. 34:1198–1207. DOI: 10.1016/j.healun.2014.10.008. PMID: 25534019.
Article
10. Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z, Carrillo-Reid L, Auyeung G, Antonacci C, Buch A, Yang L, Beal MF, Surmeier DJ, Kordower JH, Tabar V, Studer L. 2011; Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature. 480:547–551. DOI: 10.1038/nature10648. PMID: 22056989. PMCID: PMC3245796.
Article
11. Dey M, Ozbolat IT. 2020; 3D bioprinting of cells, tissues and organs. Sci Rep. 10:14023. DOI: 10.1038/s41598-020-70086-y. PMID: 32811864. PMCID: PMC7434768.
Article
12. Crane AT, Aravalli RN, Asakura A, Grande AW, Krishna VD, Carlson DF, Cheeran MC, Danczyk G, Dutton JR, Hackett PB, Hu WS, Li L, Lu WC, Miller ZD, O'Brien TD, Panoskaltsis-Mortari A, Parr AM, Pearce C, Ruiz-Estevez M, Shiao M, Sipe CJ, Toman NG, Voth J, Xie H, Steer CJ, Low WC. 2019; Interspecies organogenesis for human transplantation. Cell Transplant. 28:1091–1105. DOI: 10.1177/0963689719845351. PMID: 31426664. PMCID: PMC6767879. PMID: 0e597a7add9c43cfb591e8698243ec66.
Article
13. Chen J, Lansford R, Stewart V, Young F, Alt FW. 1993; RAG-2-deficient blastocyst complementation: an assay of gene function in lymphocyte development. Proc Natl Acad Sci U S A. 90:4528–4532. DOI: 10.1073/pnas.90.10.4528. PMID: 8506294. PMCID: PMC46545.
Article
14. Fraidenraich D, Stillwell E, Romero E, Wilkes D, Manova K, Basson CT, Benezra R. 2004; Rescue of cardiac defects in id knockout embryos by injection of embryonic stem cells. Science. 306:247–252. DOI: 10.1126/science.1102612. PMID: 15472070. PMCID: PMC1351017.
Article
15. Kobayashi T, Yamaguchi T, Hamanaka S, Kato-Itoh M, Yamazaki Y, Ibata M, Sato H, Lee YS, Usui J, Knisely AS, Hirabayashi M, Nakauchi H. 2010; Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell. 142:787–799. DOI: 10.1016/j.cell.2010.07.039. PMID: 20813264.
Article
16. Matsunari H, Nagashima H, Watanabe M, Umeyama K, Nakano K, Nagaya M, Kobayashi T, Yamaguchi T, Sumazaki R, Herzenberg LA, Nakauchi H. 2013; Blastocyst complementation generates exogenic pancreas in vivo in apan-creatic cloned pigs. Proc Natl Acad Sci U S A. 110:4557–4562. DOI: 10.1073/pnas.1222902110. PMID: 23431169. PMCID: PMC3607052.
Article
17. Yamaguchi T, Sato H, Kato-Itoh M, Goto T, Hara H, Sanbo M, Mizuno N, Kobayashi T, Yanagida A, Umino A, Ota Y, Hamanaka S, Masaki H, Rashid ST, Hirabayashi M, Nakauchi H. 2017; Interspecies organogenesis generates autologous functional islets. Nature. 542:191–196. DOI: 10.1038/nature21070. PMID: 28117444.
Article
18. Isotani A, Hatayama H, Kaseda K, Ikawa M, Okabe M. 2011; Formation of a thymus from rat ES cells in xenogeneic nude mouse↔rat ES chimeras. Genes Cells. 16:397–405. DOI: 10.1111/j.1365-2443.2011.01495.x. PMID: 21401810.
Article
19. Usui J, Kobayashi T, Yamaguchi T, Knisely AS, Nishinakamura R, Nakauchi H. 2012; Generation of kidney from pluripotent stem cells via blastocyst complementation. Am J Pathol. 180:2417–2426. DOI: 10.1016/j.ajpath.2012.03.007. PMID: 22507837.
Article
20. Yamanaka S, Tajiri S, Fujimoto T, Matsumoto K, Fukunaga S, Kim BS, Okano HJ, Yokoo T. 2017; Generation of interspecies limited chimeric nephrons using a conditional nephron progenitor cell replacement system. Nat Commun. 8:1719. DOI: 10.1038/s41467-017-01922-5. PMID: 29170512. PMCID: PMC5701015. PMID: b61fa958ba624c5393de0249d5c0bab0.
Article
21. Goto T, Hara H, Sanbo M, Masaki H, Sato H, Yamaguchi T, Hochi S, Kobayashi T, Nakauchi H, Hirabayashi M. 2019; Generation of pluripotent stem cell-derived mouse kidneys in Sall1-targeted anephric rats. Nat Commun. 10:451. DOI: 10.1038/s41467-019-08394-9. PMID: 30723213. PMCID: PMC6363802. PMID: 37e5f190bd684e10aa522b392a114893.
Article
22. Watanabe M, Nakano K, Uchikura A, Matsunari H, Yashima S, Umeyama K, Takayanagi S, Sakuma T, Yamamoto T, Morita S, Horii T, Hatada I, Nishinakamura R, Nakauchi H, Nagashima H. 2019; Anephrogenic phenotype induced by SALL1 gene knockout in pigs. Sci Rep. 9:8016. DOI: 10.1038/s41598-019-44387-w. PMID: 31142767. PMCID: PMC6541644.
Article
23. Matsunari H, Watanabe M, Hasegawa K, Uchikura A, Nakano K, Umeyama K, Masaki H, Hamanaka S, Yamaguchi T, Nagaya M, Nishinakamura R, Nakauchi H, Nagashima H. 2020; Compensation of disabled organogeneses in genetically modified pig fetuses by blastocyst comple-mentation. Stem Cell Reports. 14:21–33. DOI: 10.1016/j.stemcr.2019.11.008. PMID: 31883918. PMCID: PMC6962638.
Article
24. Wu J, Platero-Luengo A, Sakurai M, Sugawara A, Gil MA, Yamauchi T, Suzuki K, Bogliotti YS, Cuello C, Morales Valencia M, Okumura D, Luo J, Vilariño M, Parrilla I, Soto DA, Martinez CA, Hishida T, Sánchez-Bautista S, Martinez-Martinez ML, Wang H, Nohalez A, Aizawa E, Martinez-Redondo P, Ocampo A, Reddy P, Roca J, Maga EA, Esteban CR, Berggren WT, Nuñez Delicado E, Lajara J, Guillen I, Guillen P, Campistol JM, Martinez EA, Ross PJ, Izpisua Belmonte JC. 2017; Interspecies chimerism with mammalian pluripotent stem cells. Cell. 168:473–486.e15. DOI: 10.1016/j.cell.2016.12.036. PMID: 28129541. PMCID: PMC5679265.
Article
25. Zhang H, Huang J, Li Z, Qin G, Zhang N, Hai T, Hong Q, Zheng Q, Zhang Y, Song R, Yao J, Cao C, Zhao J, Zhou Q. 2018; Rescuing ocular development in an anophthalmic pig by blastocyst complementation. EMBO Mol Med. 10:e8861. DOI: 10.15252/emmm.201808861. PMID: 30446498. PMCID: PMC6284517.
Article
26. Steevens AR, Griesbach MW, You Y, Dutton JR, Low WC, Santi PA. 2021; Generation of inner ear sensory neurons using blastocyst complementation in a Neurog1/-deficient mouse. Stem Cell Res Ther. 12:122. DOI: 10.1186/s13287-021-02184-1. PMID: 33579352. PMCID: PMC7881691. PMID: 52f702c5d50c40be8ec82d0efb64cfa6.
27. Mori M, Furuhashi K, Danielsson JA, Hirata Y, Kakiuchi M, Lin CS, Ohta M, Riccio P, Takahashi Y, Xu X, Emala CW, Lu C, Nakauchi H, Cardoso WV. 2019; Generation of functional lungs via conditional blastocyst complementation using pluripotent stem cells. Nat Med. 25:1691–1698. DOI: 10.1038/s41591-019-0635-8. PMID: 31700187.
Article
28. Kitahara A, Ran Q, Oda K, Yasue A, Abe M, Ye X, Sasaoka T, Tsuchida M, Sakimura K, Ajioka Y, Saijo Y, Zhou Q. 2020; Generation of lungs by blastocyst complementation in apneumic Fgf10-deficient mice. Cell Rep. 31:107626. DOI: 10.1016/j.celrep.2020.107626. PMID: 32402288.
Article
29. Ran Q, Zhou Q, Oda K, Yasue A, Abe M, Ye X, Li Y, Sasaoka T, Sakimura K, Ajioka Y, Saijo Y. 2020; Generation of thyroid tissues from embryonic stem cells via blastocyst complementation in vivo. Front Endocrinol (Lausanne). 11:609697. DOI: 10.3389/fendo.2020.609697. PMID: 33381086. PMCID: PMC7767966. PMID: 3e63c86498fa41d9af0175cc5f7db864.
Article
30. Wen B, Li E, Ustiyan V, Wang G, Guo M, Na CL, Kalin GT, Galvan V, Xu Y, Weaver TE, Kalin TV, Whitsett JA, Kalinichenko VV. 2021; In vivo generation of lung and thyroid tissues from embryonic stem cells using blastocyst comple-mentation. Am J Respir Crit Care Med. 203:471–483. DOI: 10.1164/rccm.201909-1836OC. PMID: 32877203. PMCID: PMC7885842.
Article
31. Ruiz-Estevez M, Crane AT, Rodriguez-Villamil P, Ongaratto FL, You Y, Steevens AR, Hill C, Goldsmith T, Webster DA, Sherry L, Lim S, Denman N, Low WC, Carlson DF, Dutton JR, Steer CJ, Gafni O. 2021; Liver development is restored by blastocyst complementation of HHEX knockout in mice and pigs. Stem Cell Res Ther. 12:292. DOI: 10.1186/s13287-021-02348-z. PMID: 34011403. PMCID: PMC8132445. PMID: 4d8b1183f68246fe85476a7b0d4f9213.
Article
32. Chubb R, Oh J, Riley AK, Kimura T, Wu SM, Wu JY. 2017; In vivo rescue of the hematopoietic niche by Pluripotent stem cell complementation of defective osteoblast compartments. Stem Cells. 35:2150–2159. DOI: 10.1002/stem.2670. PMID: 28741855. PMCID: PMC5610643.
Article
33. Maeng G, Das S, Greising SM, Gong W, Singh BN, Kren S, Mickelson D, Skie E, Gafni O, Sorensen JR, Weaver CV, Garry DJ, Garry MG. 2021; Humanized skeletal muscle in MYF5/MYOD/MYF6-null pig embryos. Nat Biomed Eng. [Epub ahead of print]. DOI: 10.1038/s41551-021-00693-1. PMID: 33782573.
Article
34. Kobayashi T, Goto T, Oikawa M, Sanbo M, Yoshida F, Terada R, Niizeki N, Kajitani N, Kazuki K, Kazuki Y, Hochi S, Nakauchi H, Surani MA, Hirabayashi M. 2021; Blastocyst complementation using Prdm14-deficient rats enables efficient germline transmission and generation of functional mouse spermatids in rats. Nat Commun. 12:1328. DOI: 10.1038/s41467-021-21557-x. PMID: 33637711. PMCID: PMC7910474. PMID: 9eb88f2e20b34fab81b008931d8f11b3.
Article
35. Hamanaka S, Umino A, Sato H, Hayama T, Yanagida A, Mizuno N, Kobayashi T, Kasai M, Suchy FP, Yamazaki S, Masaki H, Yamaguchi T, Nakauchi H. 2018; Generation of vascular endothelial cells and hematopoietic cells by blastocyst complementation. Stem Cell Reports. 11:988–997. DOI: 10.1016/j.stemcr.2018.08.015. PMID: 30245211. PMCID: PMC6178562.
Article
36. Wang G, Wen B, Ren X, Li E, Zhang Y, Guo M, Xu Y, Whitsett JA, Kalin TV, Kalinichenko VV. 2021; Generation of pulmonary endothelial progenitor cells for cell-based therapy using interspecies mouse-rat chimeras. Am J Respir Crit Care Med. 204:326–338. DOI: 10.1164/rccm.202003-0758OC. PMID: 33705684. PMCID: PMC8513594.
Article
37. Das S, Koyano-Nakagawa N, Gafni O, Maeng G, Singh BN, Rasmussen T, Pan X, Choi KD, Mickelson D, Gong W, Pota P, Weaver CV, Kren S, Hanna JH, Yannopoulos D, Garry MG, Garry DJ. 2020; Generation of human endothelium in pig embryos deficient in ETV2. Nat Biotechnol. 38:297–302. DOI: 10.1038/s41587-019-0373-y. PMID: 32094659.
Article
38. Vilarino M, Rashid ST, Suchy FP, McNabb BR, van der Meulen T, Fine EJ, Ahsan SD, Mursaliyev N, Sebastiano V, Diab SS, Huising MO, Nakauchi H, Ross PJ. 2017; CRISPR/Cas9 microinjection in oocytes disables pancreas development in sheep. Sci Rep. 7:17472. DOI: 10.1038/s41598-017-17805-0. PMID: 29234093. PMCID: PMC5727233.
Article
39. Wang J, Liu M, Zhao L, Li Y, Zhang M, Jin Y, Xiong Q, Liu X, Zhang L, Jiang H, Chen Q, Wang C, You Z, Yang H, Cao C, Dai Y, Li R. 2019; Disabling of nephrogenesis in porcine embryos via CRISPR/Cas9-mediated SIX1 and SIX4 gene targeting. Xenotransplantation. 26:e12484. DOI: 10.1111/xen.12484. PMID: 30623494.
Article
40. Kobayashi T, Kato-Itoh M, Nakauchi H. 2015; Targeted organ generation using Mixl1-inducible mouse pluripotent stem cells in blastocyst complementation. Stem Cells Dev. 24:182–189. DOI: 10.1089/scd.2014.0270. PMID: 25192056. PMCID: PMC4291089.
Article
41. Hashimoto H, Eto T, Yamamoto M, Yagoto M, Goto M, Kagawa T, Kojima K, Kawai K, Akimoto T, Takahashi RI. 2019; Development of blastocyst complementation technology without contributions to gametes and the brain. Exp Anim. 68:361–370. DOI: 10.1538/expanim.18-0173. PMID: 30996149. PMCID: PMC6699975.
Article
42. Masaki H, Kato-Itoh M, Takahashi Y, Umino A, Sato H, Ito K, Yanagida A, Nishimura T, Yamaguchi T, Hirabayashi M, Era T, Loh KM, Wu SM, Weissman IL, Nakauchi H. 2016; Inhibition of apoptosis overcomes stage-related compatibility barriers to chimera formation in mouse embryos. Cell Stem Cell. 19:587–592. DOI: 10.1016/j.stem.2016.10.013. PMID: 27814480.
Article
43. Lyons I, Parsons LM, Hartley L, Li R, Andrews JE, Robb L, Harvey RP. 1995; Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev. 9:1654–1666. DOI: 10.1101/gad.9.13.1654. PMID: 7628699.
Article
44. Yamaguchi T, Sato H, Kobayashi T, Kato-Itoh M, Goto T, Hara H, Mizuno N, Yanagida A, Umino A, Hamanaka S, Suchy F, Masaki H, Ota Y, Hirabayashi M, Nakauchi H. 2018; An interspecies barrier to tetraploid complementation and chimera formation. Sci Rep. 8:15289. DOI: 10.1038/s41598-018-33690-7. PMID: 30327488. PMCID: PMC6191448.
Article
45. Masaki H, Kato-Itoh M, Umino A, Sato H, Hamanaka S, Kobayashi T, Yamaguchi T, Nishimura K, Ohtaka M, Nakanishi M, Nakauchi H. 2015; Interspecific in vitro assay for the chimera-forming ability of human pluripotent stem cells. Development. 142:3222–3230. DOI: 10.1242/dev.124016. PMID: 26023098.
46. Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, Gardner RL, McKay RD. 2007; New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature. 448:196–199. DOI: 10.1038/nature05972. PMID: 17597760.
Article
47. Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B, Chuva de Sousa Lopes SM, Howlett SK, Clarkson A, Ahrlund-Richter L, Pedersen RA, Vallier L. 2007; Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature. 448:191–195. DOI: 10.1038/nature05950. PMID: 17597762.
Article
48. Takahashi S, Kobayashi S, Hiratani I. 2018; Epigenetic differences between naïve and primed pluripotent stem cells. Cell Mol Life Sci. 75:1191–1203. DOI: 10.1007/s00018-017-2703-x. PMID: 29134247. PMCID: PMC5843680.
Article
49. Weinberger L, Ayyash M, Novershtern N, Hanna JH. 2016; Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat Rev Mol Cell Biol. 17:155–169. DOI: 10.1038/nrm.2015.28. PMID: 26860365.
Article
50. Mascetti VL, Pedersen RA. 2016; Human-mouse chimerism validates human stem cell pluripotency. Cell Stem Cell. 18:67–72. DOI: 10.1016/j.stem.2015.11.017. PMID: 26712580. PMCID: PMC4712187.
Article
51. Hanna J, Cheng AW, Saha K, Kim J, Lengner CJ, Soldner F, Cassady JP, Muffat J, Carey BW, Jaenisch R. 2010; Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc Natl Acad Sci U S A. 107:9222–9227. DOI: 10.1073/pnas.1004584107. PMID: 20442331. PMCID: PMC2889088.
Article
52. Chan YS, Göke J, Ng JH, Lu X, Gonzales KA, Tan CP, Tng WQ, Hong ZZ, Lim YS, Ng HH. 2013; Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast. Cell Stem Cell. 13:663–675. DOI: 10.1016/j.stem.2013.11.015. PMID: 24315441.
Article
53. Gafni O, Weinberger L, Mansour AA, Manor YS, Chomsky E, Ben-Yosef D, Kalma Y, Viukov S, Maza I, Zviran A, Rais Y, Shipony Z, Mukamel Z, Krupalnik V, Zerbib M, Geula S, Caspi I, Schneir D, Shwartz T, Gilad S, Amann-Zalcenstein D, Benjamin S, Amit I, Tanay A, Massarwa R, Novershtern N, Hanna JH. 2013; Derivation of novel human ground state naive pluripotent stem cells. Nature. 504:282–286. DOI: 10.1038/nature12745. PMID: 24172903.
Article
54. Takashima Y, Guo G, Loos R, Nichols J, Ficz G, Krueger F, Oxley D, Santos F, Clarke J, Mansfield W, Reik W, Bertone P, Smith A. 2014; Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell. 158:1254–1269. DOI: 10.1016/j.cell.2014.08.029. PMID: 25215486. PMCID: PMC4162745.
Article
55. Theunissen TW, Powell BE, Wang H, Mitalipova M, Faddah DA, Reddy J, Fan ZP, Maetzel D, Ganz K, Shi L, Lungjangwa T, Imsoonthornruksa S, Stelzer Y, Rangarajan S, D'Alessio A, Zhang J, Gao Q, Dawlaty MM, Young RA, Gray NS, Jaenisch R. 2014; Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell. 15:471–487. DOI: 10.1016/j.stem.2014.07.002. PMID: 25090446. PMCID: PMC4184977.
Article
56. Wu J, Okamura D, Li M, Suzuki K, Luo C, Ma L, He Y, Li Z, Benner C, Tamura I, Krause MN, Nery JR, Du T, Zhang Z, Hishida T, Takahashi Y, Aizawa E, Kim NY, Lajara J, Guillen P, Campistol JM, Esteban CR, Ross PJ, Saghatelian A, Ren B, Ecker JR, Izpisua Belmonte JC. 2015; An alternative pluripotent state confers interspecies chimaeric competency. Nature. 521:316–321. DOI: 10.1038/nature14413. PMID: 25945737. PMCID: PMC5278765.
Article
57. Yang Y, Liu B, Xu J, Wang J, Wu J, Shi C, Xu Y, Dong J, Wang C, Lai W, Zhu J, Xiong L, Zhu D, Li X, Yang W, Yamauchi T, Sugawara A, Li Z, Sun F, Li X, Li C, He A, Du Y, Wang T, Zhao C, Li H, Chi X, Zhang H, Liu Y, Li C, Duo S, Yin M, Shen H, Belmonte JCI, Deng H. 2017; Derivation of pluripotent stem cells with in vivo embryonic and extraembryonic potency. Cell. 169:243–257.e25. DOI: 10.1016/j.cell.2017.02.005. PMID: 28388409. PMCID: PMC5679268.
Article
58. Fu R, Yu D, Ren J, Li C, Wang J, Feng G, Wang X, Wan H, Li T, Wang L, Zhang Y, Hai T, Li W, Zhou Q. 2020; Domesticated cynomolgus monkey embryonic stem cells allow the generation of neonatal interspecies chimeric pigs. Protein Cell. 11:97–107. DOI: 10.1007/s13238-019-00676-8. PMID: 31781970. PMCID: PMC6954905. PMID: eacddf71247f49628605cabe365419c9.
Article
59. Yu L, Wei Y, Sun HX, Mahdi AK, Pinzon Arteaga CA, Sakurai M, Schmitz DA, Zheng C, Ballard ED, Li J, Tanaka N, Kohara A, Okamura D, Mutto AA, Gu Y, Ross PJ, Wu J. 2021; Derivation of intermediate pluripotent stem cells amenable to primordial germ cell specification. Cell Stem Cell. 28:550–567.e12. DOI: 10.1016/j.stem.2020.11.003. PMID: 33271070.
Article
60. Aksoy I, Rognard C, Moulin A, Marcy G, Masfaraud E, Wianny F, Cortay V, Bellemin-Ménard A, Doerflinger N, Dirheimer M, Mayère C, Bourillot PY, Lynch C, Raineteau O, Joly T, Dehay C, Serrano M, Afanassieff M, Savatier P. 2021; Apoptosis, G1 phase stall, and premature differentiation account for low chimeric competence of human and rhesus monkey naive pluripotent stem cells. Stem Cell Reports. 16:56–74. DOI: 10.1016/j.stemcr.2020.12.004. PMID: 33382978. PMCID: PMC7815945.
Article
61. Pampfer S, Donnay I. 1999; Apoptosis at the time of embryo implantation in mouse and rat. Cell Death Differ. 6:533–545. DOI: 10.1038/sj.cdd.4400516. PMID: 10381643.
Article
62. Fabian D, Koppel J, Maddox-Hyttel P. 2005; Apoptotic processes during mammalian preimplantation development. Therio-genology. 64:221–231. DOI: 10.1016/j.theriogenology.2004.11.022. PMID: 15955348.
Article
63. Oestrup O, Hall V, Petkov SG, Wolf XA, Hyldig S, Hyttel P. 2009; From zygote to implantation: morphological and molecular dynamics during embryo development in the pig. Reprod Domest Anim. 44 Suppl 3:39–49. DOI: 10.1111/j.1439-0531.2009.01482.x. PMID: 19660079.
Article
64. Wang X, Li T, Cui T, Yu D, Liu C, Jiang L, Feng G, Wang L, Fu R, Zhang X, Hao J, Wang Y, Wang L, Zhou Q, Li W, Hu B. 2018; Human embryonic stem cells contribute to embryonic and extraembryonic lineages in mouse embryos upon inhibition of apoptosis. Cell Res. 28:126–129. DOI: 10.1038/cr.2017.138. PMID: 29099092. PMCID: PMC5752840.
Article
65. Huang K, Zhu Y, Ma Y, Zhao B, Fan N, Li Y, Song H, Chu S, Ouyang Z, Zhang Q, Xing Q, Lai C, Li N, Zhang T, Gu J, Kang B, Shan Y, Lai K, Huang W, Mai Y, Wang Q, Li J, Lin A, Zhang Y, Zhong X, Liao B, Lai L, Chen J, Pei D, Pan G. 2018; BMI1 enables interspecies chimerism with human pluripotent stem cells. Nat Commun. 9:4649. DOI: 10.1038/s41467-018-07098-w. PMID: 30405129. PMCID: PMC6220315. PMID: 2abbe79b23a8490c97938adbb303433b.
Article
66. Zheng C, Ballard EB, Wu J. 2021; The road to generating transplantable organs: from blastocyst complementation to interspecies chimeras. Development. 148:dev195792. DOI: 10.1242/dev.195792. PMID: 34132325.
Article
67. Wu J, Greely HT, Jaenisch R, Nakauchi H, Rossant J, Belmonte JC. 2016; Stem cells and interspecies chimaeras. Nature. 540:51–59. DOI: 10.1038/nature20573. PMID: 27905428.
Article
68. De Los Angeles A, Elsworth JD, Redmond DE Jr. 2019; ERK-independent African Green monkey pluripotent stem cells in a putative chimera-competent state. Biochem Biophys Res Commun. 510:78–84. DOI: 10.1016/j.bbrc.2019.01.037. PMID: 30660369.
Article
69. Nowak-Imialek M, Wunderlich S, Herrmann D, Breitschuh-Leibling S, Gohring G, Petersen B, Klein S, Baulain U, Lucas-Hahn A, Martin U, Niemann H. 2020; In vitro and in vivo interspecies chimera assay using early pig embryos. Cell Reprogram. 22:118–133. DOI: 10.1089/cell.2019.0107. PMID: 32429746.
Article
70. Akhlaghpour A, Taei A, Ghadami SA, Bahadori Z, Yakhkeshi S, Molamohammadi S, Kiani T, Samadian A, Ghezelayagh Z, Haghparast N, Khalooghi K, Braun T, Baharvand H, Hassani SN. 2021; Chicken interspecies chimerism unveils human pluripotency. Stem Cell Reports. 16:39–55. DOI: 10.1016/j.stemcr.2020.11.014. PMID: 33357408. PMCID: PMC7815937.
Article
71. Tan T, Wu J, Si C, Dai S, Zhang Y, Sun N, Zhang E, Shao H, Si W, Yang P, Wang H, Chen Z, Zhu R, Kang Y, Hernandez-Benitez R, Martinez Martinez L, Nuñez Delicado E, Berggren WT, Schwarz M, Ai Z, Li T, Rodriguez Esteban C, Ji W, Niu Y, Izpisua Belmonte JC. 2021; Chimeric contribution of human extended pluripotent stem cells to monkey embryos ex vivo. Cell. 184:2020–2032.e14. DOI: 10.1016/j.cell.2021.03.020. PMID: 33861963.
Article
72. Nishimura T, Suchy FP, Bhadury J, Igarashi KJ, Charlesworth CT, Nakauchi H. 2021; Generation of functional organs using a cell-competitive niche in intra- and inter-species rodent chimeras. Cell Stem Cell. 28:141–149.e3. DOI: 10.1016/j.stem.2020.11.019. PMID: 33373620. PMCID: PMC8025673.
Article
73. Steering Committee of the Istanbul Summit. 2008; Organ trafficking and transplant tourism and commercialism: the Declaration of Istanbul. Lancet. 372:5–6. DOI: 10.1016/S0140-6736(08)60967-8. PMID: 18603141.
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr