1. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet. 2016; 387(10027):1513–30.
2. International Diabetes Federation. Diabetes atlas. 9th ed.Brussels, Belgium: International Diabetes Federation;2019.
3. Uloko AE, Musa BM, Ramalan MA, Gezawa ID, Puepet FH, Uloko AT, et al. Prevalence and risk factors for diabetes mellitus in Nigeria: a systematic review and meta-analysis. Diabetes Ther. 2018; 9(3):1307–16.
Article
4. Narayan KM, Chan J, Mohan V. Early identification of type 2 diabetes: policy should be aligned with health systems strengthening. Diabetes Care. 2011; 34(1):244–6.
5. World Health Organization. Global report on diabetes. Geneva, Switzerland: World Health Organization;2016.
6. Alebiosu OC, Familoni OB, Ogunsemi OO, Raimi TH, Balogun WO, Odusan O, et al. Community based diabetes risk assessment in Ogun state, Nigeria (World Diabetes Foundation project 08–321). Indian J Endocrinol Metab. 2013; 17(4):653–8.
Article
7. Abbasi A, Peelen LM, Corpeleijn E, van der Schouw YT, Stolk RP, Spijkerman AM, et al. Prediction models for risk of developing type 2 diabetes: systematic literature search and independent external validation study. BMJ. 2012; 345:e5900.
Article
8. Meng XH, Huang YX, Rao DP, Zhang Q, Liu Q. Comparison of three data mining models for predicting diabetes or prediabetes by risk factors. Kaohsiung J Med Sci. 2013; 29(2):93–9.
Article
9. Habibi S, Ahmadi M, Alizadeh S. Type 2 diabetes mellitus screening and risk factors using decision tree: results of data mining. Glob J Health Sci. 2015; 7(5):304–10.
Article
10. Hajian-Tilaki K. Sample size estimation in diagnostic test studies of biomedical informatics. J Biomed Inform. 2014; 48:193–204.
Article
12. Novakovic J, Rankov S. Classification performance using principal component analysis and different value of the ratio R. Int J Comput Commun Control. 2011; 6(2):317–27.
13. Russell S, Norvig P. Artificial intelligence: a modern approach. Englewood Cliffs (NJ): Prentice-Hall;2010.
14. Nwoye EO, Nwaneri SC, Iruhe NK, Babatunde AM. Application of artificial neural network in breast cancer classification: a comparative study. J Basic Med Sci. 2014; 2(1):32–8.
15. Rojas R. Neural networks: a systematic introduction. Heidelberg, Germany: Springer;1996.
16. Sisodia D, Sisodia DS. Prediction of diabetes using classification algorithms. Procedia Comput Sci. 2018; 132:1578–85.
Article
17. Dev VA, Eden MR. Gradient boosted decision trees for lithology classification. Comput Aided Chem Eng. 2019; 47:113–8.
Article
18. Lastra G, Syed S, Kurukulasuriya LR, Manrique C, Sowers JR. Type 2 diabetes mellitus and hypertension: an update. Endocrinol Metab Clin North Am. 2014; 43(1):103–22.
19. Suastika K, Dwipayana P, Semadi MS, Kuswardhani RT. Age is an important risk factor for type 2 diabetes mellitus and cardiovascular diseases. Chackrewarthy S, editor. Glucose tolerance. Rijeka, Croatia: Intech Open;2012. p. 67–76.
Article
20. Ustulin M, Rhee SY, Chon S, Ahn KK, Lim JE, Oh B, et al. Importance of family history of diabetes in computing a diabetes risk score in Korean prediabetic population. Sci Rep. 2018; 8(1):15958.
Article
21. Tillin T, Hughes AD, Godsland IF, Whincup P, Forouhi NG, Welsh P, et al. Insulin resistance and truncal obesity as important determinants of the greater incidence of diabetes in Indian Asians and African Caribbeans compared with Europeans: the Southall And Brent REvisited (SABRE) cohort. Diabetes Care. 2013; 36(2):383–93.
22. Leite RS, Marlow NM, Fernandes JK, Hermayer K. Oral health and type 2 diabetes. Am J Med Sci. 2013; 345(4):271–3.
Article
23. Lai H, Huang H, Keshavjee K, Guergachi A, Gao X. Predictive models for diabetes mellitus using machine learning techniques. BMC Endocr Disord. 2019; 19(1):101.
Article
24. El_Jerjawi NS, Abu-Naser SS. Diabetes prediction using artificial neural network. Int J Adv Sci Technol. 2018; 121:54–64.
25. Nai-arun N, Moungmai R. Comparison of classifiers for the risk of diabetes prediction. Procedia Comput Sci. 2015; 69:132–42.
Article
26. Wang C, Li L, Wang L, Ping Z, Flory MT, Wang G, et al. Evaluating the risk of type 2 diabetes mellitus using artificial neural network: an effective classification approach. Diabetes Res Clin Pract. 2013; 100(1):111–8.
Article
27. Mohamed EI, Linder R, Perriello G, Di Daniele N, Poppl SJ, De Lorenzo A. Predicting type 2 diabetes using an electronic nose-based artificial neural network analysis. Diabetes Nutr Metab. 2002; 15(4):215–21.
28. Kazemnejad A, Batvandi Z, Faradmal J. Comparison of artificial neural network and binary logistic regression for determination of impaired glucose tolerance/diabetes. East Mediterr Health J. 2010; 16(6):615–20.
Article
29. Li CP, Zhi XY, Ma J, Cui Z, Zhu ZL, Zhang C, et al. Performance comparison between logistic regression, decision trees, and multilayer perceptron in predicting peripheral neuropathy in type 2 diabetes mellitus. Chin Med J (Engl). 2012; 125(5):851–7.