1. Foster TE, Puskas BL, Mandelbaum BR, Gerhardt MB, Rodeo SA. 2009; Platelet-rich plasma: from basic science to clinical applications. Am J Sports Med. 37:2259–72. DOI:
10.1177/0363546509349921. PMID:
19875361.
2. Árnason NA, Sigurjónsson OE. 2017; New strategies to understand platelet storage lesion. ISBT Sci Ser. 12:496–500. DOI:
10.1111/voxs.12394.
Article
3. Stohlawetz P, Horvath M, Pernerstorfer T, et al. 1999; Effects of nitric oxide on platelet activation during plateletpheresis and in vivo tracking of biotinylated platelets in humans. Transfusion. 39:506–14. DOI:
10.1046/j.1537-2995.1999.39050506.x. PMID:
10336001.
Article
6. Dobrovolskaia MA, McNeil SE. 2016; Handbook of immunological properties of engineered nanomaterials. Volume 2: haematoco-mpatibility of engineered nanomaterials. Singapore:. World Scientific,. 261–302. DOI:
10.1142/9677-vol2.
9. Wang L, You X, Dai C, Tong T, Wu J. 2020; Hemostatic nanote-chnologies for external and internal hemorrhage management. Biomater Sci. 8:4396–412. DOI:
10.1039/D0BM00781A. PMID:
32658944.
Article
11. Braddock M. 2016. Nanomedicines: design, delivery and detection. Royal Society of Chemistry;London, UK: DOI:
10.1039/9781782622536.
12. Chambers P, McCarthy HO, Dunne NJ. 2019; Emerging areas of bone repair materials: nucleic acid therapy and drug delivery. In: Pawelec KM, Planell JA, eds. Bone repair biomaterials. 2nd ed. Cambridge, UK:. Woodhead Publishing,. 411–46. DOI:
10.1016/B978-0-08-102451-5.00016-0. PMID:
30991987. PMCID:
PMC6469206.
13. Fortunati E, Luzi F, Yang W, Kenny J, Torre L, Puglia D. 2018; Bio-based nanocomposites in food packaging. In: Cerqueira MAPR, Lagaron JM, Pastrana Castro LM, de Oliveira Soares Vicente AAM, eds. Nanomaterials for food packaging. Philadelphia, PA:. Elsevier Inc,. 71–110. DOI:
10.1016/B978-0-323-51271-8.00004-8.
14. Zadeh Mehrizi T, Mosaffa N, Haji Molla Hoseini M, et al. 2018; In vivo therapeutic effects of four synthesized antileishmanial nanodrugs in the treatment of Leishmaniasis. Arch Clin Infect Dis. 13:e80314. DOI:
10.5812/archcid.80314.
Article
15. Zadeh Mehrizi T, Pirali Hamedani M, Ebrahimi Shahmabadi H, et al. 2020; Effective materials of medicinal plants for leishmania treatment in vivo environment. J Med Plants. 19:39–62. DOI:
10.29252/jmp.19.74.39.
Article
16. Zadeh Mehrizi T, Shafiee Ardestani M, Haji Molla Hoseini M, Khamesipour A, Mosaffa N, Ramezani A. 2018; Novel nanosized chitosan-betulinic acid against resistant leishmania major and first clinical observation of such parasite in kidney. Sci Rep. 8:11759. DOI:
10.1038/s41598-018-30103-7. PMID:
30082741. PMCID:
PMC6078985.
Article
17. Mehrizi TZ, Ardestani MS, Molla Hoseini MH, Khamesipour A, Mosaffa N, Ramezani A. 2018; Novel nano-sized chitosan amphotericin B formulation with considerable improvement against Leishmania major. Nanomedicine (Lond). 13:3129–47. DOI:
10.2217/nnm-2018-0063. PMID:
30463469.
Article
21. Liu H, Wang C, Li C, et al. 2018; A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv. 8:7533–49. DOI:
10.1039/C7RA13510F.
Article
22. Pourshahrestani S, Zeimaran E, Adib Kadri N, et al. 2016; Gallium-containing mesoporous bioactive glass with potent hemostatic activity and antibacterial efficacy. J Mater Chem B. 4:71–86. DOI:
10.1039/C5TB02062J. PMID:
32262810.
Article
23. Shi X, Fang Q, Ding M, et al. 2016; Microspheres of carboxymethyl chitosan, sodium alginate and collagen for a novel hemostatic in vitro study. J Biomater Appl. 30:1092–102. DOI:
10.1177/0885328215618354. PMID:
26611230.
Article
26. Lord MS, Cheng B, McCarthy SJ, Jung M, Whitelock JM. 2011; The modulation of platelet adhesion and activation by chitosan through plasma and extracellular matrix proteins. Biomaterials. 32:6655–62. DOI:
10.1016/j.biomaterials.2011.05.062. PMID:
21676458.
Article
27. Chung TW, Lin PY, Wang SS, Chen YF. 2014; Adenosine diphosphate-decorated chitosan nanoparticles shorten blood clotting times, influencing the structures and varying the mechanical properties of the clots. Int J Nanomedicine. 9:1655–64. DOI:
10.2147/IJN.S57855. PMID:
24729701. PMCID:
PMC3976209.
Article
28. Periayah MH, Halim AS, Hussein AR, Saad AZ, Rashid AH, Noorsal K. 2013; In vitro capacity of different grades of chitosan derivatives to induce platelet adhesion and aggregation. Int J Biol Macromol. 52:244–9. DOI:
10.1016/j.ijbiomac.2012.10.001. PMID:
23063426.
Article
30. Gopalakrishnan L, Ramana LN, Sethuraman S, Krishnan UM. 2014; Ellagic acid encapsulated chitosan nanoparticles as anti-hemorrhagic agent. Carbohydr Polym. 111:215–21. DOI:
10.1016/j.carbpol.2014.03.093. PMID:
25037345.
Article
31. Ramtoola Z, Lyons P, Keohane K, Kerrigan SW, Kirby BP, Kelly JG. 2011; Investigation of the interaction of biodegradable micro- and nanoparticulate drug delivery systems with platelets. J Pharm Pharmacol. 63:26–32. DOI:
10.1111/j.2042-7158.2010.01174.x. PMID:
21155812.
Article
33. Xiong WY, Yi Y, Liu HZ, Wang H, Liu JH, Ying GQ. 2011; Selective carboxypropionylation of chitosan: synthesis, characterization, blood compatibility, and degradation. Carbohydr Res. 346:1217–23. DOI:
10.1016/j.carres.2011.03.037. PMID:
21549358.
Article
34. Jiang G, Lin Z, Xu X, Zhang H, Song K. 2012; Stable nanomicelles based on chitosan derivative: in vitro antiplatelet aggregation and adhesion properties. Carbohydrate Polymers. 88:232–8. DOI:
10.1016/j.carbpol.2011.11.089.
Article
35. Kim ES, Lee JS, Lee HG. 2016; Nanoencapsulation of red ginseng extracts using chitosan with polyglutamic acid or fucoidan for improving antithrombotic activities. J Agric Food Chem. 64:4765–71. DOI:
10.1021/acs.jafc.6b00911. PMID:
27181678.
Article
38. Zadeh Mehrizi T, Khamesipour A, Shafiee Ardestani M, et al. 2019; Comparative analysis between four model nanoformulations of amphotericin B-chitosan, amphotericin B-dendrimer, betulinic acid-chitosan and betulinic acid-dendrimer for treatment of Leishmania major: real-time PCR assay plus. Int J Nanomedicine. 14:7593–607. DOI:
10.2147/IJN.S220410. PMID:
31802863. PMCID:
PMC6831986.
39. Dobrovolskaia MA, Patri AK, Potter TM, Rodriguez JC, Hall JB, McNeil SE. 2012; Dendrimer-induced leukocyte procoagulant activity depends on particle size and surface charge. Nanomedicine (Lond). 7:245–56. DOI:
10.2217/nnm.11.105. PMID:
21957862.
Article
40. Dobrovolskaia MA, Patri AK, Simak J, et al. 2012; Nanoparticle size and surface charge determine effects of PAMAM dendrimers on human platelets in vitro. Mol Pharm. 9:382–93. DOI:
10.1021/mp200463e. PMID:
22026635. PMCID:
PMC3624701.
Article
41. Greish K, Thiagarajan G, Herd H, et al. 2012; Size and surface charge significantly influence the toxicity of silica and dendritic nanoparticles. Nanotoxicology. 6:713–23. DOI:
10.3109/17435390.2011.604442. PMID:
21793770.
Article
44. Chitlur M, Ware E, Kannan S, et al. 2006; Influence of nanopolymers with different end-functionalities on platelet function and the coagulation cascade - an ex-vivo study. Blood (ASH Annual Meeting Abstracts). 108(Suppl):4038. DOI:
10.1182/blood.V108.11.4038.4038.
Article
45. Šemberová J. 2012. Nanotechnology in the intensive care: intravascular biocompatibility of carbon nanomaterials-effect of carbon nanotubes on blood platelets [PhD dissertation]. Charles University;Prague, Czech Republic:
46. Aisina R, Mukhametova L, Ivanova E. 2020; Influence cationic and anionic PAMAM dendrimers of low generation on selected hemostatic parameters in vitro. Mater Sci Eng C Mater Biol Appl. 109:110605. DOI:
10.1016/j.msec.2019.110605. PMID:
32228918.
Article
47. Enciso AE, Neun B, Rodriguez J, Ranjan AP, Dobrovolskaia MA, Simanek EE. 2016; Nanoparticle effects on human platelets in vitro: a comparison between PAMAM and triazine dendrimers. Molecules. 21:428. DOI:
10.3390/molecules21040428. PMID:
27043508. PMCID:
PMC6273833.
Article
48. Watala C, Karolczak K, Kassassir H, et al. 2016; How do the full-generation poly(amido)amine (PAMAM) dendrimers activate blood platelets? Activation of circulating platelets and formation of "fibrinogen aggregates" in the presence of polycations. Int J Pharm. 503:247–61. DOI:
10.1016/j.ijpharm.2015.08.073. PMID:
26319628.
Article
49. Fu Y, Hu R, Li C, Wang Q, Liu Z, Xue W. 2014; Effects of poly (amidoamine) dendrimers on the structure and function of key blood components. J Bioact Compat Polym. 29:165–79. DOI:
10.1177/0883911514521921.
50. Liu Y, Pang Y, Toh MR, Chiu GN. 2015; Dual-functionalized poly (amidoamine) dendrimers with poly(ethylene glycol) conjugation and thiolation improved blood compatibility. J Pharm Pharmacol. 67:1492–502. DOI:
10.1111/jphp.12457. PMID:
26303576.
51. Alavi SE, Muflih Al Harthi S, Ebrahimi Shahmabadi H, Akbarzadeh A. 2019; Cisplatin-loaded polybutylcyanoacrylate nano-particles with improved properties as an anticancer agent. Int J Mol Sci. 20:1531. DOI:
10.3390/ijms20071531. PMID:
30934689. PMCID:
PMC6480951.
Article
52. Li P, Zheng W, Ma W, et al. 2018; In-situ preparation of amino-terminated dendrimers on TiO2 films by generational growth for potential and efficient surface functionalization. Appl Surf Sci. 459:438–45. DOI:
10.1016/j.apsusc.2018.08.044.
Article
53. Ilinskaya AN, Dobrovolskaia MA. 2013; Nanoparticles and the blood coagulation system. Part I: benefits of nanotechnology. Nanomedicine (Lond). 8:773–84. DOI:
10.2217/nnm.13.48. PMID:
23656264.
Article
54. Kim Y, Hechler B, Klutz AM, Gachet C, Jacobson KA. 2008; Toward multivalent signaling across G protein-coupled receptors from poly(amidoamine) dendrimers. Bioconjug Chem. 19:406–11. DOI:
10.1021/bc700327u. PMID:
18176997.
Article
55. de Castro S, Maruoka H, Hong K, et al. 2010; Functionalized congeners of P2Y1 receptor antagonists: 2-alkynyl (N)-methanocarba 2'-deoxyadenosine 3',5'-bisphosphate analogues and conjugation to a polyamidoamine (PAMAM) dendrimer carrier. Bioconjug Chem. 21:1190–205. DOI:
10.1021/bc900569u. PMID:
20565071. PMCID:
PMC2912410.
56. Ziemba B, Halets I, Shcharbin D, et al. 2012; Influence of fourth generation poly(propyleneimine) dendrimers on blood cells. J Biomed Mater Res A. 100:2870–80. DOI:
10.1002/jbm.a.34222. PMID:
22623362.
Article
57. Ziemba B, Janaszewska A, Ciepluch K, et al. 2011; In vivo toxicity of poly (propyleneimine) dendrimers. J Biomed Mater Res A. 99:261–8. DOI:
10.1002/jbm.a.33196. PMID:
21976451.
58. Franiak-Pietryga I, Ziolkowska E, Ziemba B, et al. 2012; Nanoparticles-a novel approach to chronic lymphocytic leukemia treatment? Blood (ASH Annual Meeting Abstracts). 120(Suppl):4601. DOI:
10.1182/blood.V120.21.4601.4601.
59. Franiak-Pietryga I, Ziółkowska E, Ziemba B, et al. 2013; The influence of maltotriose-modified poly(propylene imine) dendrimers on the chronic lymphocytic leukemia cells in vitro: dense shell G4 PPI. Mol Pharm. 10:2490–501. DOI:
10.1021/mp400142p. PMID:
23641871.
Article
60. Peña-González CE, Pedziwiatr-Werbicka E, Shcharbin D, et al. 2017; Gold nanoparticles stabilized by cationic carbosilane dendrons: synthesis and biological properties. Dalton Trans. 46:8736–45. DOI:
10.1039/C6DT03791G. PMID:
28091639.
Article
61. Pedziwiatr-Werbicka E, Peña-González CE, Stasiak K, et al. 2016. Toxicity of gold nanoparticles stabilized by cationic carbosilane dendrons. Belarusian State University;Minsk, Belarus:
62. Dzmitruk V, Pedziwiatr-Werbicka E, Shcharbin D, et al. 2015; Platelets aggregation induced by dendrimers and their complexes with siRNA and ODN, albumins impact on the process. News Biomed Sci. 12:139–43.
63. Barrios-Gumiel A, Sánchez-Nieves J, Pedziwiatr-Werbicka E, et al. 2020; Effect of PEGylation on the biological properties of cationic carbosilane dendronized gold nanoparticles. Int J Pharm. 573:118867. DOI:
10.1016/j.ijpharm.2019.118867. PMID:
31765788.
Article
64. Hashempour Alamdari N, Alaei-Beirami M, Sadat Shandiz SA, et al. 2017; Gd
3+-asparagine-anionic linear globular dendrimer second-generation G2 complexes: novel nanobiohybrid theranostics. Contrast Media Mol Imaging. 2017:3625729. DOI:
10.1155/2017/3625729. PMID:
29097918. PMCID:
PMC5635473.
65. Mirzaei M, Mohagheghi M, Shahbazi-Gahrouei D, Khatami A. 2012; Novel nanosized GD
3+-ALGD-G
2-C595: in vivo dual selective MUC-1 positive tumor molecular MR imaging and therapeutic agent. J Nanomed Nanotechnol. 3:1000147. DOI:
10.4172/2157-7439.1000147.
66. Mehrizi TZ, Ardestani MS, Khamesipour A, et al. 2018; Reduction toxicity of Amphotericin B through loading into a novel nanoformulation of anionic linear globular dendrimer for improve treatment of leishmania major. J Mater Sci Mater Med. 29:125. DOI:
10.1007/s10856-018-6122-9. PMID:
30056571.
Article
67. Mirzaei H, Kazemi B, Bandehpour M, et al. 2016; Computational and nonglycosylated systems: a simpler approach for development of nanosized PEGylated proteins. Drug Des Devel Ther. 10:1193–200. DOI:
10.2147/DDDT.S98323. PMID:
27042012. PMCID:
PMC4801162.
68. Alavidjeh MS, Haririan I, Khorramizadeh MR, Ghane ZZ, Ardestani MS, Namazi H. 2010; Anionic linear-globular dendrimers: biocompatible hybrid materials with potential uses in nanomedicine. J Mater Sci Mater Med. 21:1121–33. DOI:
10.1007/s10856-009-3978-8. PMID:
20082119.
Article
69. Fernandes EG, de Queiroz AA, Abraham GA, San Román J. 2006; Antithrombogenic properties of bioconjugate streptokinase-polyglycerol dendrimers. J Mater Sci Mater Med. 17:105–11. DOI:
10.1007/s10856-006-6813-5. PMID:
16502242.
Article
70. D'souza AA, Shegokar R. 2016; Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin Drug Deliv. 13:1257–75. DOI:
10.1080/17425247.2016.1182485. PMID:
27116988.
71. Knop K, Hoogenboom R, Fischer D, Schubert US. 2010; Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed Engl. 49:6288–308. DOI:
10.1002/anie.200902672. PMID:
20648499.
Article
72. Scott MD, Nakane N, Maurer-Spurej E. Quain M, editor. 2019. Cryoprotection of platelets by grafted polymers. Cryopreservation-current advances and evaluations. IntechOpen;London, UK: DOI:
10.5772/intechopen.89272.
Article
73. Tarrand J, Andersson B. 2018. Compositions and methods for prolonged cell storage. The University of Texas System;Austin, TX:
74. Maurer E, Scott MD, Kitamura N. 2011. Cold storage of pegylated platelets at about or below 0° C. Canadian Blood Services;Ottawa, CA:
76. Greco CA, Maurer-Spurej E, Scott MD, Kalab M, Nakane N, Ramírez-Arcos SM. 2011; PEGylation prevents bacteria-induced platelet activation and biofilm formation in platelet concentrates. Vox Sang. 100:336–9. DOI:
10.1111/j.1423-0410.2010.01419.x. PMID:
21392023.
Article
77. Kim Y, Hechler B, Gao ZG, Gachet C, Jacobson KA. 2009; PEGylated dendritic unimolecular micelles as versatile carriers for ligands of G protein-coupled receptors. Bioconjug Chem. 20:1888–98. DOI:
10.1021/bc9001689. PMID:
19785401. PMCID:
PMC2891302.
Article
78. Fuentes E, Yameen B, Bong SJ, Salvador-Morales C, Palomo I, Vilos C. 2017; Antiplatelet effect of differentially charged PEGylated lipid-polymer nanoparticles. Nanomedicine. 13:1089–94. DOI:
10.1016/j.nano.2016.10.010. PMID:
27789259.
Article
79. Srinivasan M, Sudheer AR, Pillai KR, Kumar PR, Sudhakaran PR, Menon VP. 2007; Modulatory effects of curcumin on γ-radiation-induced cellular damage in primary culture of isolated rat hepatocytes. Environ Toxicol Pharmacol. 24:98–105. DOI:
10.1016/j.etap.2007.03.001. PMID:
21783796.
Article
80. Wakamoto S, Fujihara M, Abe H, et al. 2001; Effects of poly (ethyleneglycol)-modified hemoglobin vesicles on agonist-induced platelet aggregation and RANTES release in vitro. Artif Cells Blood Substit Immobil Biotechnol. 29:191–201. DOI:
10.1081/BIO-100103043. PMID:
11358035.
82. Bakhaidar R, O'Neill S, Ramtoola Z. 2020; PLGA-PEG nanoparticles show minimal risks of interference with platelet function of human platelet-rich plasma. Int J Mol Sci. 21:9716. DOI:
10.3390/ijms21249716. PMID:
33352749. PMCID:
PMC7767100.
Article
84. Beltrán-Gracia E, López-Camacho A, Higuera-Ciapara I, Velázquez-Fernández JB, Vallejo-Cardona AA. 2019; Nanomedicine review: clinical developments in liposomal applications. Cancer Nano. 10:11. DOI:
10.1186/s12645-019-0055-y.
Article
85. Shahabi J, Shahmabadi HE, Alavi SE, et al. 2014; Effect of gold nanoparticles on properties of nanoliposomal hydroxyurea: an in vitro study. Indian J Clin Biochem. 29:315–20. DOI:
10.1007/s12291-013-0355-7. PMID:
24966479. PMCID:
PMC4062658.
Article
86. Zhang Y, Wei J, Liu S, et al. 2017; Inhibition of platelet function using liposomal nanoparticles blocks tumor metastasis. Theranostics. 7:1062–71. DOI:
10.7150/thno.17908. PMID:
28435448. PMCID:
PMC5399576.
Article
87. Okamura Y, Katsuno S, Suzuki H, et al. 2010; Release abilities of adenosine diphosphate from phospholipid vesicles with different membrane properties and their hemostatic effects as a platelet substitute. J Control Release. 148:373–9. DOI:
10.1016/j.jconrel.2010.09.013. PMID:
20875473.
Article
88. Srinivasan R, Marchant RE, Gupta AS. 2010; In vitro and in vivo platelet targeting by cyclic RGD-modified liposomes. J Biomed Mater Res A. 93:1004–15. DOI:
10.1002/jbm.a.32549. PMID:
19743511. PMCID:
PMC2854838.
89. Vaidya B, Nayak MK, Dash D, Agrawal GP, Vyas SP. 2011; Development and characterization of site specific target sensitive liposomes for the delivery of thrombolytic agents. Int J Pharm. 403:254–61. DOI:
10.1016/j.ijpharm.2010.10.028. PMID:
20971175.
Article
90. Kuznetsova NR, Sevrin C, Lespineux D, et al. 2012; Hemocompatibility of liposomes loaded with lipophilic prodrugs of methotrexate and melphalan in the lipid bilayer. J Control Release. 160:394–400. DOI:
10.1016/j.jconrel.2011.12.010. PMID:
22210161.
Article
91. Chan VWT. 2018. Liposomal-encapsulated enzymes can be delivered to and modify platelet function ex vivo [PhD dissertation]. University of British Columbia;Vancouver, Canada:
92. Chen KY, Lin TH, Yang CY, Kuo YW, Lei U. 2018; Mechanics for the adhesion and aggregation of red blood cells on chitosan. J Mech. 34:725–32. DOI:
10.1017/jmech.2018.27.
Article
93. Stoll C, Holovati JL, Acker JP, Wolkers WF. 2011; Liposomes composed of unsaturated lipids for membrane modification of human erythrocytes. Mol Membr Biol. 28:454–61. DOI:
10.3109/09687688.2011.622304. PMID:
21954868.
Article
94. Da Silveira Cavalcante L. 2017. The effects of liposome treatment on red blood cells during hypothermic storage [PhD dissertation]. University of Alberta;Edmonton, Canada:
95. da Silveira Cavalcante L, Feng Q, Chin-Yee I, Acker JP, Holovati JL. 2017; Effect of liposome-treated red blood cells in an anemic rat model. J Liposome Res. 27:56–63. DOI:
10.3109/08982104.2016.1149867. PMID:
27055898.
96. Stadnick H, Stoll C, Wolkers WF, Acker JP, Holovati JL. 2011; The effect of liposome treatment on the quality of hypothermically stored red blood cells. Biopreserv Biobank. 9:335–42. DOI:
10.1089/bio.2011.0023. PMID:
24836629.
Article
97. Stadnick HPA. 2011. The deformability of hypothermically stored red blood cells. University of Alberta;Edmonton, CA: