2. Nagaiah G, Hossain A, Mooney CJ, Parmentier J, Remick SC. 2011; Anaplastic thyroid cancer: a review of epidemiology, pathogenesis, and treatment. J Oncol. 2011:542358. DOI:
10.1155/2011/542358. PMID:
21772843. PMCID:
PMC3136148.
Article
3. Smallridge RC, Marlow LA, Copland JA. 2009; Anaplastic thyroid cancer: molecular pathogenesis and emerging therapies. Endocr Relat Cancer. 16(1):17–44. DOI:
10.1677/ERC-08-0154. PMID:
18987168. PMCID:
PMC2829440.
Article
4. Landa I, Ibrahimpasic T, Boucai L, Sinha R, Knauf JA, Shah RH, et al. 2016; Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 126(3):1052–66. DOI:
10.1172/JCI85271. PMID:
26878173. PMCID:
PMC4767360.
Article
5. Lee JH, Lee ES, Kim YS. 2007; Clinicopathologic significance of BRAF V600E mutation in papillary carcinomas of the thyroid: a meta-analysis. Cancer. 110(1):38–46. DOI:
10.1002/cncr.22754. PMID:
17520704.
7. Xing M. 2007; BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev. 28(7):742–62. DOI:
10.1210/er.2007-0007. PMID:
17940185.
Article
8. Nikiforov YE. 2004; Genetic alterations involved in the transition from well-differentiated to poorly differentiated and anaplastic thyroid carcinomas. Endocr Pathol. 15(4):319–27. DOI:
10.1385/EP:15:4:319. PMID:
15681856.
Article
9. Tesselaar MH, Crezee T, Swarts HG, Gerrits D, Boerman OC, Koenderink JB, et al. 2017; Digitalis-like compounds facilitate non-medullary thyroid cancer redifferentiation through intracel-lular Ca2+, FOS, and autophagy-dependent pathways. Mol Cancer Ther. 16(1):169–81. DOI:
10.1158/1535-7163.MCT-16-0460. PMID:
27837029.
Article
10. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2016; 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Associa-tion guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 26(1):1–133. DOI:
10.1089/thy.2015.0020. PMID:
26462967. PMCID:
PMC4739132.
Article
11. Crispo F, Notarangelo T, Pietrafesa M, Lettini G, Storto G, Sgambato A, et al. 2019; BRAF inhibitors in thyroid cancer: clinical impact, mechanisms of resistance and future perspectives. Cancers (Basel). 11(9):1388. DOI:
10.3390/cancers11091388. PMID:
31540406. PMCID:
PMC6770736.
Article
12. Subbiah V, Kreitman RJ, Wainberg ZA, Cho JY, Schellens JHM, Soria JC, et al. 2018; Dabrafenib and trametinib treatment in patients with locally advanced or metastatic BRAF V600-mutant anaplastic thyroid cancer. J Clin Oncol. 36(1):7–13. DOI:
10.1200/JCO.2017.73.6785. PMID:
29072975. PMCID:
PMC5791845.
Article
13. Costa R, Carneiro BA, Chandra S, Pai SG, Chae YK, Kaplan JB, et al. 2016; Spotlight on lenvatinib in the treatment of thyroid cancer: patient selection and perspectives. Drug Des Devel Ther. 10:873–84. DOI:
10.2147/DDDT.S93459. PMID:
27013865. PMCID:
PMC4778792.
Article
14. Hong CM, Ahn BC. 2017; Redifferentiation of radioiodine refractory differentiated thyroid cancer for reapplication of I-131 therapy. Front Endocrinol (Lausanne). 8:260. DOI:
10.3389/fendo.2017.00260. PMID:
29085335. PMCID:
PMC5649198.
Article
15. Oh JM, Ahn BC. 2021; Molecular mechanisms of radioactive iodine refractoriness in differentiated thyroid cancer: impaired sodium iodide symporter (NIS) expression owing to altered signaling pathway activity and intracellular localization of NIS. Theranostics. 11(13):6251–77. DOI:
10.7150/thno.57689. PMID:
33995657. PMCID:
PMC8120202.
Article
16. Liu D, Hu S, Hou P, Jiang D, Condouris S, Xing M. 2007; Suppression of BRAF/MEK/MAP kinase pathway restores expression of iodide-metabolizing genes in thyroid cells expressing the V600E BRAF mutant. Clin Cancer Res. 13(4):1341–9. DOI:
10.1158/1078-0432.CCR-06-1753. PMID:
17317846.
Article
17. Riesco-Eizaguirre G, Gutierrez-Martinez P, Garcia-Cabezas MA, Nistal M, Santisteban P. 2006; The oncogene BRAF V600E is associated with a high risk of recurrence and less differentiated papillary thyroid carcinoma due to the impairment of Na+/I- targeting to the membrane. Endocr Relat Cancer. 13(1):257–69. DOI:
10.1677/erc.1.01119. PMID:
16601293.
18. Ofir Dovrat T, Sokol E, Frampton G, Shachar E, Pelles S, Geva R, et al. 2018; Unusually long-term responses to vemurafenib in BRAF V600E mutated colon and thyroid cancers followed by the development of rare RAS activating mutations. Cancer Biol Ther. 19(10):871–4. DOI:
10.1080/15384047.2018.1480289. PMID:
30036146. PMCID:
PMC6300338.
Article
19. Montero-Conde C, Ruiz-Llorente S, Dominguez JM, Knauf JA, Viale A, Sherman EJ, et al. 2013; Relief of feedback inhibition of HER3 transcription by RAF and MEK inhibitors attenuates their antitumor effects in BRAF-mutant thyroid carcinomas. Cancer Discov. 3(5):520–33. DOI:
10.1158/2159-8290.CD-12-0531. PMID:
23365119. PMCID:
PMC3651738.
Article
20. Cheng L, Jin Y, Liu M, Ruan M, Chen L. 2017; HER inhibitor promotes BRAF/MEK inhibitor-induced redifferentiation in papillary thyroid cancer harboring BRAFV600E. Oncotarget. 8(12):19843–54. DOI:
10.18632/oncotarget.15773. PMID:
28423638. PMCID:
PMC5386727.
Article
21. Song H, Zhang J, Ning L, Zhang H, Chen D, Jiao X, et al. 2018; The MEK1/2 inhibitor AZD6244 sensitizes BRAF-mutant thyroid cancer to vemurafenib. Med Sci Monit. 24:3002–10. DOI:
10.12659/MSM.910084. PMID:
29737325. PMCID:
PMC5965018.
Article
22. Zhang H, Chen D. 2018; Synergistic inhibition of MEK/ERK and BRAF V600E with PD98059 and PLX4032 induces sodium/iodide symporter (NIS) expression and radioiodine uptake in BRAF mutated papillary thyroid cancer cells. Thyroid Res. 11:13. DOI:
10.1186/s13044-018-0057-6. PMID:
30337961. PMCID:
PMC6180498.
Article