Int J Thyroidol.  2021 Nov;14(2):98-111. 10.11106/ijt.2021.14.2.98.

Current Status and Future Perspective of the Treatment for Radioiodine Refractory Differentiated Thyroid Cancer

Affiliations
  • 1Division of Endocrinology, Asan Medical Center, University of Ulsan, Seoul, Korea

Abstract

Radioiodine refractory differentiated thyroid cancers are rare but they make a definite problem since they run relentlessly progressive course leading to death in a few years. Recent development of various tyrosine kinase inhibitors significantly prolonged the overall survival of these patients. Currently available agents are mostly directed to VEGFR and are not specific to thyroid cancer and their efficacy is somewhat limited for a certain period of time. Very recently developed specific agents can significantly prolong the overall survival of these patients without serious adverse event and probably this kind of precision medicine shall be available to all the patients in near future but at present successive salvage treatment using different angiogenesis inhibitors may be an alternative option.

Keyword

Radioiodine refractory differentiated thyroid cancer; Tyrosine kinase inhibitors; Salvage treatment; Precision medicine

Reference

References

1. Kim TY, Kim WG, Kim WB, Shong YK. 2014; Current status and future perspectives in differentiated thyroid cancer. Endocrinol Metab (Seoul). 29(3):217–25. DOI: 10.3803/EnM.2014.29.3.217. PMID: 25309778. PMCID: PMC4192824.
Article
2. Chung JK, Cheon GJ. 2014; Radioiodine therapy in differentiated thyroid cancer: the first targeted therapy in oncology. Endocrinol Metab (Seoul). 29(3):233–9. DOI: 10.3803/EnM.2014.29.3.233. PMID: 25309780. PMCID: PMC4192819.
Article
3. Durante C, Haddy N, Baudin E, Leboulleux S, Hartl D, Travagli JP, et al. 2006; Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab. 91(8):2892–9. DOI: 10.1210/jc.2005-2838. PMID: 16684830.
Article
4. Kim WG, Kim EY, Kim TY, Ryu JS, Hong SJ, Kim WB, et al. 2009; Redifferentiation therapy with 13-cis retinoic acids in radioiodine-resistant thyroid cancer. Endocr J. 56(1):105–12. DOI: 10.1507/endocrj.K08E-254. PMID: 18854619.
Article
5. Kebebew E, Lindsay S, Clark OH, Woeber KA, Hawkins R, Greenspan FS. 2009; Results of rosiglitazone therapy in patients with thyroglobulin-positive and radioiodine-negative advanced differentiated thyroid cancer. Thyroid. 19(9):953–6. DOI: 10.1089/thy.2008.0371. PMID: 19678746.
Article
6. Ho AL, Grewal RK, Leboeuf R, Sherman EJ, Pfister DG, Deandreis D, et al. 2013; Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med. 368(7):623–32. DOI: 10.1056/NEJMoa1209288. PMID: 23406027. PMCID: PMC3615415.
Article
7. Rothenberg SM, McFadden DG, Palmer EL, Daniels GH, Wirth LJ. 2015; Redifferentiation of iodine-refractory BRAF V600E- mutant metastatic papillary thyroid cancer with dabrafenib. Clin Cancer Res. 21(5):1028–35. DOI: 10.1158/1078-0432.CCR-14-2915. PMID: 25549723.
8. Dunn LA, Sherman EJ, Baxi SS, Tchekmedyian V, Grewal RK, Larson SM, et al. 2019; Vemurafenib redifferentiation of BRAF mutant, RAI-refractory thyroid cancers. J Clin Endocrinol Metab. 104(5):1417–28. DOI: 10.1210/jc.2018-01478. PMID: 30256977. PMCID: PMC6435099.
Article
9. Cancer Genome Atlas Research Network. 2014; Integrated genomic characterization of papillary thyroid carcinoma. Cell. 159(3):676–90. DOI: 10.1016/j.cell.2014.09.050. PMID: 25417114. PMCID: PMC4243044.
10. Yen I, Shanahan F, Lee J, Hong YS, Shin SJ, Moore AR, et al. 2021; ARAF mutations confer resistance to the RAF inhibitor belvarafenib in melanoma. Nature. 594(7863):418–23. DOI: 10.1038/s41586-021-03515-1. PMID: 33953400.
Article
11. Dadu R, Shah K, Busaidy NL, Waguespack SG, Habra MA, Ying AK, et al. 2015; Efficacy and tolerability of vemurafenib in patients with BRAF(V600E)-positive papillary thyroid cancer: M.D. Anderson Cancer Center off label experience. J Clin Endocrinol Metab. 100(1):E77–81. DOI: 10.1210/jc.2014-2246. PMID: 25353071. PMCID: PMC4283003.
12. Consoli F, Bersanelli M, Perego G, Grisanti S, Merelli B, Berruti A, et al. 2020; Network indirect comparison of 3 BRAF + MEK inhibitors for the treatment of advanced BRAF mutated melanoma. Clin Transl Oncol. 22(6):900–7. DOI: 10.1007/s12094-019-02207-7. PMID: 31555967.
13. Falchook GS, Millward M, Hong D, Naing A, Piha-Paul S, Waguespack SG, et al. 2015; BRAF inhibitor dabrafenib in patients with metastatic BRAF-mutant thyroid cancer. Thyroid. 25(1):71–7. DOI: 10.1089/thy.2014.0123. PMID: 25285888. PMCID: PMC4291160.
Article
14. Carr LL, Mankoff DA, Goulart BH, Eaton KD, Capell PT, Kell EM, et al. 2010; Phase II study of daily sunitinib in FDG-PET-positive, iodine-refractory differentiated thyroid cancer and metastatic medullary carcinoma of the thyroid with functional imaging correlation. Clin Cancer Res. 16(21):5260–8. DOI: 10.1158/1078-0432.CCR-10-0994. PMID: 20847059. PMCID: PMC3063514.
Article
15. Dadu R, Devine C, Hernandez M, Waguespack SG, Busaidy NL, Hu MI, et al. 2014; Role of salvage targeted therapy in differentiated thyroid cancer patients who failed first-line sorafenib. J Clin Endocrinol Metab. 99(6):2086–94. DOI: 10.1210/jc.2013-3588. PMID: 24628550. PMCID: PMC4037722.
Article
16. Diez JJ, Iglesias P, Alonso T, Grande E. 2015; Activity and safety of sunitinib in patients with advanced radioactive iodine-refractory differentiated thyroid carcinoma in clinical practice. Endocrine. 48(2):582–8. DOI: 10.1007/s12020-014-0356-1. PMID: 25030550.
Article
17. Leboulleux S, Bastholt L, Krause T, de la Fouchardiere C, Tennvall J, Awada A, et al. 2012; Vandetanib in locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 2 trial. Lancet Oncol. 13(9):897–905. DOI: 10.1016/S1470-2045(12)70335-2. PMID: 22898678.
Article
18. Evaluation of efficacy, safety of vandetanib in patients with differentiated thyroid cancer (VERIIFY). cited October 16, 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT01876784.
19. Elisei R, Schlumberger MJ, Muller SP, Schoffski P, Brose MS, Shah MH, et al. 2013; Cabozantinib in progressive medullary thyroid cancer. J Clin Oncol. 31(29):3639–46. DOI: 10.1200/JCO.2012.48.4659. PMID: 24002501. PMCID: PMC4164813.
Article
20. A study of two different doses of cabozantinib (XL184) in progressive, metastatic medullary thyroid cancer (EXAMINER). cited October 16, 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT01896479.
21. Cabanillas ME, Brose MS, Holland J, Ferguson KC, Sherman SI. 2014; A phase I study of cabozantinib (XL184) in patients with differentiated thyroid cancer. Thyroid. 24(10):1508–14. DOI: 10.1089/thy.2014.0125. PMID: 25102375. PMCID: PMC4195402.
Article
22. Cabanillas ME, de Souza JA, Geyer S, Wirth LJ, Menefee ME, Liu SV, et al. 2017; Cabozantinib as salvage therapy for patients with tyrosine kinase inhibitor-refractory differentiated thyroid cancer: results of a multicenter phase II International Thyroid Oncology Group trial. J Clin Oncol. 35(29):3315–21. DOI: 10.1200/JCO.2017.73.0226. PMID: 28817373. PMCID: PMC5652872.
Article
23. A study of cabozantinib compared with placebo in subjects with radioiodine-refractory differentiated thyroid cancer who have progressed after prior VEGFR-targeted therapy. cited October 16, 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT03690388.
24. Sherman SI, Wirth LJ, Droz JP, Hofmann M, Bastholt L, Martins RG, et al. 2008; Motesanib diphosphate in progressive differentiated thyroid cancer. N Engl J Med. 359(1):31–42. DOI: 10.1056/NEJMoa075853. PMID: 18596272.
Article
25. Schlumberger MJ, Elisei R, Bastholt L, Wirth LJ, Martins RG, Locati LD, et al. 2009; Phase II study of safety and efficacy of motesanib in patients with progressive or symptomatic, advanced or metastatic medullary thyroid cancer. J Clin Oncol. 27(23):3794–801. DOI: 10.1200/JCO.2008.18.7815. PMID: 19564535.
Article
26. Bass MB, Sherman SI, Schlumberger MJ, Davis MT, Kivman L, Khoo HM, et al. 2010; Biomarkers as predictors of response to treatment with motesanib in patients with progressive advanced thyroid cancer. J Clin Endocrinol Metab. 95(11):5018–27. DOI: 10.1210/jc.2010-0947. PMID: 20739388.
Article
27. Keefe SM, Cohen MA, Brose MS. 2010; Targeting vascular endothelial growth factor receptor in thyroid cancer: the intracellular and extracellular implications. Clin Cancer Res. 16(3):778–83. DOI: 10.1158/1078-0432.CCR-08-2743. PMID: 20103668.
Article
28. Cohen EE, Rosen LS, Vokes EE, Kies MS, Forastiere AA, Worden FP, et al. 2008; Axitinib is an active treatment for all histologic subtypes of advanced thyroid cancer: results from a phase II study. J Clin Oncol. 26(29):4708–13. DOI: 10.1200/JCO.2007.15.9566. PMID: 18541897. PMCID: PMC4859206.
Article
29. Locati LD, Licitra L, Agate L, Ou SH, Boucher A, Jarzab B, et al. 2014; Treatment of advanced thyroid cancer with axitinib: Phase 2 study with pharmacokinetic/pharmacodynamic and quality-of-life assessments. Cancer. 120(17):2694–703. DOI: 10.1002/cncr.28766. PMID: 24844950.
Article
30. Cohen EE, Tortorici M, Kim S, Ingrosso A, Pithavala YK, Bycott P. 2014; A Phase II trial of axitinib in patients with various histologic subtypes of advanced thyroid cancer: long-term outcomes and pharmacokinetic/pharmacodynamic analyses. Cancer Chemother Pharmacol. 74(6):1261–70. DOI: 10.1007/s00280-014-2604-8. PMID: 25315258. PMCID: PMC4236619.
Article
31. Bible KC, Suman VJ, Molina JR, Smallridge RC, Maples WJ, Menefee ME, et al. 2010; Efficacy of pazopanib in progressive, radioiodine-refractory, metastatic differentiated thyroid cancers: results of a phase 2 consortium study. Lancet Oncol. 11(10):962–72. DOI: 10.1016/S1470-2045(10)70203-5. PMID: 20851682. PMCID: PMC3107731.
Article
32. Lin YS, Zhang X, Wang C, Liu YQ, Guan WM, Liang J. 2021; Long-term results of a phase II trial of apatinib for progressive radioiodine refractory differentiated thyroid cancer. J Clin Endocrinol Metab. 106(8):e3027–e36. DOI: 10.1210/clinem/dgab196. PMID: 33769497.
Article
33. Gupta-Abramson V, Troxel AB, Nellore A, Puttaswamy K, Redlinger M, Ransone K, et al. 2008; Phase II trial of sorafenib in advanced thyroid cancer. J Clin Oncol. 26(29):4714–9. DOI: 10.1200/JCO.2008.16.3279. PMID: 18541894. PMCID: PMC2653134.
Article
34. Kloos RT, Ringel MD, Knopp MV, Hall NC, King M, Stevens R, et al. 2009; Phase II trial of sorafenib in metastatic thyroid cancer. J Clin Oncol. 27(10):1675–84. DOI: 10.1200/JCO.2008.18.2717. PMID: 19255327. PMCID: PMC2668972.
Article
35. Hoftijzer H, Heemstra KA, Morreau H, Stokkel MP, Corssmit EP, Gelderblom H, et al. 2009; Beneficial effects of sorafenib on tumor progression, but not on radioiodine uptake, in patients with differentiated thyroid carcinoma. Eur J Endocrinol. 161(6):923–31. DOI: 10.1530/EJE-09-0702. PMID: 19773371.
Article
36. Cabanillas ME, Waguespack SG, Bronstein Y, Williams MD, Feng L, Hernandez M, et al. 2010; Treatment with tyrosine kinase inhibitors for patients with differentiated thyroid cancer: the M. D. Anderson experience. J Clin Endocrinol Metab. 95(6):2588–95. DOI: 10.1210/jc.2009-1923. PMID: 20392874.
Article
37. Ahmed M, Barbachano Y, Riddell A, Hickey J, Newbold KL, Viros A, et al. 2011; Analysis of the efficacy and toxicity of sorafenib in thyroid cancer: a phase II study in a UK based population. Eur J Endocrinol. 165(2):315–22. DOI: 10.1530/EJE-11-0129. PMID: 21566072.
Article
38. Marotta V, Ramundo V, Camera L, Del Prete M, Fonti R, Esposito R, et al. 2013; Sorafenib in advanced iodine-refractory differentiated thyroid cancer: efficacy, safety and exploratory analysis of role of serum thyroglobulin and FDG-PET. Clin Endocrinol (Oxf). 78(5):760–7. DOI: 10.1111/cen.12057. PMID: 23009688.
Article
39. Schneider TC, Abdulrahman RM, Corssmit EP, Morreau H, Smit JW, Kapiteijn E. 2012; Long-term analysis of the efficacy and tolerability of sorafenib in advanced radio-iodine refractory differentiated thyroid carcinoma: final results of a phase II trial. Eur J Endocrinol. 167(5):643–50. DOI: 10.1530/EJE-12-0405. PMID: 22918300.
Article
40. Brose MS, Nutting CM, Jarzab B, Elisei R, Siena S, Bastholt L, et al. 2014; Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet. 384(9940):319–28. DOI: 10.1016/S0140-6736(14)60421-9. PMID: 24768112. PMCID: PMC4366116.
Article
41. Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, et al. 2007; Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med. 356(2):125–34. DOI: 10.1056/NEJMoa060655. PMID: 17215530.
Article
42. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. 2008; Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 359(4):378–90. DOI: 10.1056/NEJMoa0708857. PMID: 18650514.
Article
43. Worden F, Fassnacht M, Shi Y, Hadjieva T, Bonichon F, Gao M, et al. 2015; Safety and tolerability of sorafenib in patients with radioiodine-refractory thyroid cancer. Endocr Relat Cancer. 22(6):877–87. DOI: 10.1530/ERC-15-0252. PMID: 26370187. PMCID: PMC4570090.
Article
44. Brose MS, Frenette CT, Keefe SM, Stein SM. 2014; Management of sorafenib-related adverse events: a clinician's perspective. Semin Oncol. 41 Suppl 2:S1–S16. DOI: 10.1053/j.seminoncol.2014.01.001. PMID: 24576654.
Article
45. Shin SY, Lee YJ. 2013; Correlation of skin toxicity and hypertension with clinical benefit in advanced hepatocellular carcinoma patients treated with sorafenib. Int J Clin Pharmacol Ther. 51(11):837–46. DOI: 10.5414/CP201907. PMID: 24075093.
Article
46. Reig M, Torres F, Rodriguez-Lope C, Forner A, N LL, Rimola J, et al. 2014; Early dermatologic adverse events predict better outcome in HCC patients treated with sorafenib. J Hepatol. 61(2):318–24. DOI: 10.1016/j.jhep.2014.03.030. PMID: 24703956.
Article
47. Cabanillas ME, Schlumberger M, Jarzab B, Martins RG, Pacini F, Robinson B, et al. 2015; A phase 2 trial of lenvatinib (E7080) in advanced, progressive, radioiodine-refractory, differentiated thyroid cancer: a clinical outcomes and biomarker assessment. Cancer. 121(16):2749–56. DOI: 10.1002/cncr.29395. PMID: 25913680. PMCID: PMC4803478.
Article
48. Schlumberger M, Tahara M, Wirth LJ, Robinson B, Brose MS, Elisei R, et al. 2015; Lenvatinib versus placebo in radioiodine- refractory thyroid cancer. N Engl J Med. 372(7):621–30. DOI: 10.1056/NEJMoa1406470. PMID: 25671254.
49. Schlumberger M, Jarzab B, Cabanillas ME, Robinson B, Pacini F, Ball DW, et al. 2016; A phase II trial of the multitargeted tyrosine kinase inhibitor lenvatinib (E7080) in advanced medullary thyroid cancer. Clin Cancer Res. 22(1):44–53. DOI: 10.1158/1078-0432.CCR-15-1127. PMID: 26311725.
Article
50. A trial of lenvatinib (E7080) in subjects with iodine-131 refractory differentiated thyroid cancer to evaluate whether an oral starting dose of 18 milligram (mg) daily will provide comparable efficacy to a 24 mg starting dose, but have a better safety profile. cited October 16, 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT02702388.
51. Hayato S, Shumaker R, Ferry J, Binder T, Dutcus CE, Hussein Z. 2018; Exposure-response analysis and simulation of lenvatinib safety and efficacy in patients with radioiodine- refractory differentiated thyroid cancer. Cancer Chemother Pharmacol. 82(6):971–8. DOI: 10.1007/s00280-018-3687-4. PMID: 30244318. PMCID: PMC6267706.
52. Kiyota N, Schlumberger M, Muro K, Ando Y, Takahashi S, Kawai Y, et al. 2015; Subgroup analysis of Japanese patients in a phase 3 study of lenvatinib in radioiodine-refractory differentiated thyroid cancer. Cancer Sci. 106(12):1714–21. DOI: 10.1111/cas.12826. PMID: 26426092. PMCID: PMC4714672.
Article
53. Chen L, Shen Y, Luo Q, Yu Y, Lu H, Zhu R. 2011; Response to sorafenib at a low dose in patients with radioiodine-refractory pulmonary metastases from papillary thyroid carcinoma. Thyroid. 21(2):119–24. DOI: 10.1089/thy.2010.0199. PMID: 21186953.
Article
54. Massicotte MH, Brassard M, Claude-Desroches M, Borget I, Bonichon F, Giraudet AL, et al. 2014; Tyrosine kinase inhibitor treatments in patients with metastatic thyroid carcinomas: a retrospective study of the TUTHYREF network. Eur J Endocrinol. 170(4):575–82. DOI: 10.1530/EJE-13-0825. PMID: 24424318.
Article
55. Kim M, Kim TH, Shin DY, Lim DJ, Kim EY, Kim WB, et al. 2018; Tertiary care experience of sorafenib in the treatment of progressive radioiodine-refractory differentiated thyroid carcinoma: a Korean multicenter study. Thyroid. 28(3):340–8. DOI: 10.1089/thy.2017.0356. PMID: 29350109. PMCID: PMC6225595.
Article
56. Oh HS, Shin DY, Kim M, Park SY, Kim TH, Kim BH, et al. 2019; Extended real-world observation of patients treated with sorafenib for radioactive iodine-refractory differentiated thyroid carcinoma and impact of lenvatinib salvage treatment: a Korean multicenter study. Thyroid. 29(12):1804–10. DOI: 10.1089/thy.2019.0246. PMID: 31592739.
Article
57. Kim MJ, Kim SM, Lee EK, Hwangbo Y, Lee YJ, Cho SW, et al. 2019; Tumor doubling time predicts response to sorafenib in radioactive iodine-refractory differentiated thyroid cancer. Endocr J. 66(7):597–604. DOI: 10.1507/endocrj.EJ18-0488. PMID: 31006722.
Article
58. Sabra MM, Sherman EJ, Tuttle RM. 2017; Tumor volume doubling time of pulmonary metastases predicts overall survival and can guide the initiation of multikinase inhibitor therapy in patients with metastatic, follicular cell-derived thyroid carcinoma. Cancer. 123(15):2955–64. DOI: 10.1002/cncr.30690. PMID: 28369717. PMCID: PMC6396830.
Article
59. Tuttle RM, Brose MS, Grande E, Kim SW, Tahara M, Sabra MM. 2017; Novel concepts for initiating multitargeted kinase inhibitors in radioactive iodine refractory differentiated thyroid cancer. Best Pract Res Clin Endocrinol Metab. 31(3):295–305. DOI: 10.1016/j.beem.2017.04.014. PMID: 28911726.
Article
60. Sabra MM, Sherman E, Tuttle RM. 2019; Prolongation of tumour volume doubling time (midDT) is associated with improvement in disease-specific survival in patients with rapidly progressive radioactive iodine refractory differentiated thyroid cancer selected for molecular targeted therapy. Clin Endocrinol (Oxf). 90(4):617–22. DOI: 10.1111/cen.13941. PMID: 30706513. PMCID: PMC6761925.
Article
61. Cheng L, Fu H, Jin Y, Sa R, Chen L. 2020; Clinicopathological features predict outcomes in patients with radioiodine-refractory differentiated thyroid cancer treated with sorafenib: a real-world study. Oncologist. 25(4):e668–78. DOI: 10.1634/theoncologist.2019-0633. PMID: 31957916. PMCID: PMC7160413.
Article
62. Lin CY, Chang JS, Huang SM, Hung CJ, Hung CL, Chang CT, et al. 2021; Experience of sorafenib treatment in differentiated thyroid cancer from Taiwan. J Formos Med Assoc. 120(1 Pt 1):189–95. DOI: 10.1016/j.jfma.2020.04.021. PMID: 32402521.
Article
63. Berdelou A, Borget I, Godbert Y, Nguyen T, Garcia ME, Chougnet CN, et al. 2018; Lenvatinib for the treatment of radioiodine-refractory thyroid cancer in real-life practice. Thyroid. 28(1):72–8. DOI: 10.1089/thy.2017.0205. PMID: 29048237.
Article
64. Sugino K, Nagahama M, Kitagawa W, Ohkuwa K, Uruno T, Matsuzu K, et al. 2018; Clinical factors related to the efficacy of tyrosine kinase inhibitor therapy in radioactive iodine refractory recurrent differentiated thyroid cancer patients. Endocr J. 65(3):299–306. DOI: 10.1507/endocrj.EJ17-0365. PMID: 29269689.
Article
65. Locati LD, Piovesan A, Durante C, Bregni M, Castagna MG, Zovato S, et al. 2019; Real-world efficacy and safety of lenvatinib: data from a compassionate use in the treatment of radioactive iodine-refractory differentiated thyroid cancer patients in Italy. Eur J Cancer. 118:35–40. DOI: 10.1016/j.ejca.2019.05.031. PMID: 31299580.
Article
66. Suzuki C, Kiyota N, Imamura Y, Goto H, Suto H, Chayahara N, et al. 2019; Exploratory analysis of prognostic factors for lenvatinib in radioiodine-refractory differentiated thyroid cancer. Head Neck. 41(9):3023–32. DOI: 10.1002/hed.25784. PMID: 31013380.
Article
67. Masaki C, Sugino K, Saito N, Akaishi J, Hames KY, Tomoda C, et al. 2020; Efficacy and limitations of lenvatinib therapy for radioiodine-refractory differentiated thyroid cancer: real-world experiences. Thyroid. 30(2):214–21. DOI: 10.1089/thy.2019.0221. PMID: 31854270.
Article
68. Aydemirli MD, Kapiteijn E, Ferrier KRM, Ottevanger PB, Links TP, van der Horst-Schrivers ANA, et al. 2020; Effectiveness and toxicity of lenvatinib in refractory thyroid cancer: Dutch real-life data. Eur J Endocrinol. 182(2):131–8. DOI: 10.1530/EJE-19-0763. PMID: 31751307.
Article
69. Song E, Kim M, Kim EY, Kim BH, Shin DY, Kang HC, et al. 2020; Lenvatinib for radioactive iodine-refractory differentiated thyroid carcinoma and candidate biomarkers associated with survival: a multicenter study in Korea. Thyroid. 30(5):732–8. DOI: 10.1089/thy.2019.0476. PMID: 31910091.
Article
70. Rendl G, Sipos B, Becherer A, Sorko S, Trummer C, Raderer M, et al. 2020; Real-world data for lenvatinib in radioiodine-refractory differentiated thyroid cancer (RELEVANT): a retrospective multicentric analysis of clinical practice in Austria. Int J Endocrinol. 2020:8834148. DOI: 10.1155/2020/8834148. PMID: 33312196. PMCID: PMC7719524.
Article
71. Jerkovich F, Califano I, Bueno F, Carrera JM, Giglio R, Abelleira E, et al. 2020; Real-life use of lenvatinib in patients with differentiated thyroid cancer: experience from Argentina. Endocrine. 69(1):142–8. DOI: 10.1007/s12020-020-02290-9. PMID: 32253682.
Article
72. Kish JK, Chatterjee D, Wan Y, Yu HT, Liassou D, Feinberg BA. 2020; Lenvatinib and subsequent therapy for radioactive iodine-refractory differentiated thyroid cancer: a real-world study of clinical effectiveness in the United States. Adv Ther. 37(6):2841–52. DOI: 10.1007/s12325-020-01362-6. PMID: 32382946. PMCID: PMC7467445.
Article
73. Porcelli T, Luongo C, Sessa F, Klain M, Masone S, Troncone G, et al. 2021; Long-term management of lenvatinib-treated thyroid cancer patients: a real-life experience at a single institution. Endocrine. 73(2):358–66. DOI: 10.1007/s12020-021-02634-z. PMID: 33537956.
Article
74. Platini F, Cavalieri S, Alfieri S, Bergamini C, Resteghini C, Bottiglieri A, et al. 2021; Late toxicities burden in patients with radioiodine-refractory differentiated thyroid cancer treated with lenvatinib. Endocrine. 73(3):641–7. DOI: 10.1007/s12020-021-02702-4. PMID: 33797698.
Article
75. Giani C, Valerio L, Bongiovanni A, Durante C, Grani G, Ibrahim T, et al. 2021; Safety and quality-of-life data from an Italian expanded access program of lenvatinib for treatment of thyroid cancer. Thyroid. 31(2):224–32. DOI: 10.1089/thy.2020.0276. PMID: 32907501.
Article
76. Paschke L, Lincke T, Muhlberg KS, Jabs WJ, Lindner TH, Paschke R. 2018; Anti VEGF-TKI treatment and new renal adverse events not reported in phase III trials. Eur Thyroid J. 7(6):308–12. DOI: 10.1159/000491387. PMID: 30574461. PMCID: PMC6276742.
Article
77. Iwasaki H, Yamazaki H, Takasaki H, Suganuma N, Sakai R, Nakayama H, et al. 2019; Renal dysfunction in patients with radioactive iodine-refractory thyroid cancer treated with tyrosine kinase inhibitors: a retrospective study. Medicine (Baltimore). 98(42):e17588. DOI: 10.1097/MD.0000000000017588. PMID: 31626129. PMCID: PMC6824644.
78. Paschke L, Lincke T, Muhlberg K, Lindner TH, Paschke R. 2019; Myocardial infarction after long-term treatment with a tyrosine kinase inhibitor (TKI) with anti-VEGF receptor activity. Case Rep Endocrinol. 2019:7927450. DOI: 10.1155/2019/7927450. PMID: 31281683. PMCID: PMC6590543.
Article
79. Butt MI, Khalid Bakhsh AM, Nadri QJ. 2021; Lenvatinib-induced multiorgan adverse events in Hurthle cell thyroid cancer: a case report. World J Clin Oncol. 12(4):272–81. DOI: 10.5306/wjco.v12.i4.272. PMID: 33959480. PMCID: PMC8085512.
Article
80. Tamai T, Hayato S, Hojo S, Suzuki T, Okusaka T, Ikeda K, et al. 2017; Dose finding of lenvatinib in subjects with advanced hepatocellular carcinoma based on population pharmacokinetic and exposure-response analyses. J Clin Pharmacol. 57(9):1138–47. DOI: 10.1002/jcph.917. PMID: 28561918. PMCID: PMC5575539.
Article
81. Subbiah V, Gainor JF, Rahal R, Brubaker JD, Kim JL, Maynard M, et al. 2018; Precision targeted therapy with BLU-667 for RET-driven cancers. Cancer Discov. 8(7):836–49. DOI: 10.1158/2159-8290.CD-18-0338. PMID: 29657135.
Article
82. Markham A. 2020; Pralsetinib: first approval. Drugs. 80(17):1865–70. DOI: 10.1007/s40265-020-01427-4. PMID: 33136236.
Article
83. Wirth LJ, Sherman E, Robinson B, Solomon B, Kang H, Lorch J, et al. 2020; Efficacy of selpercatinib in RET-altered thyroid cancers. N Engl J Med. 383(9):825–35. DOI: 10.1056/NEJMoa2005651. PMID: 32846061.
Article
84. Markham A. 2020; Selpercatinib: first approval. Drugs. 80(11):1119–24. DOI: 10.1007/s40265-020-01343-7. PMID: 32557397. PMCID: PMC7716849.
Article
85. Laetsch TW, DuBois SG, Mascarenhas L, Turpin B, Federman N, Albert CM, et al. 2018; Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: phase 1 results from a multicentre, open-label, phase 1/2 study. Lancet Oncol. 19(5):705–14. DOI: 10.1016/S1470-2045(18)30119-0. PMID: 29606586. PMCID: PMC5949072.
Article
86. Kelly LM, Barila G, Liu P, Evdokimova VN, Trivedi S, Panebianco F, et al. 2014; Identification of the transforming STRN-ALK fusion as a potential therapeutic target in the aggressive forms of thyroid cancer. Proc Natl Acad Sci U S A. 111(11):4233–8. DOI: 10.1073/pnas.1321937111. PMID: 24613930. PMCID: PMC3964116.
Article
87. de Salins V, Loganadane G, Joly C, Abulizi M, Nourieh M, Boussion H, et al. 2020; Complete response in anaplastic lymphoma kinase-rearranged oncocytic thyroid cancer: a case report and review of literature. World J Clin Oncol. 11(7):495–503. DOI: 10.5306/wjco.v11.i7.495. PMID: 32821654. PMCID: PMC7407927.
Full Text Links
  • IJT
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr