J Korean Acad Prosthodont.  2021 Oct;59(4):379-394. 10.4047/jkap.2021.59.4.379.

Effect and mechanism of chitosan-based nano-controlled release system on the promotion of cell cycle progression gene expression

Affiliations
  • 1Department of Biomaterials & Prosthodontics, Kyung Hee University Hospital at Gangdong, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
  • 2Department of Dentistry, Graduate School, Kyung Hee University, Seoul, Republic of Korea

Abstract

Purpose
In our previous studies, application of trichloroacetic acid (TCA) to gingival fibroblasts or to canine palatal soft tissue was verified to alter the expression of several genes responsible for cell cycle progression. In order to confirm this effect in a system allowing sequential release of TCA and epidermal growth factor (EGF), expression of various cell cycle genes following the application of the agents, using hydrophobically modified glycol chitosan (HGC)-based nano-controlled release system, was explored in this study.
Materials and methods
HGCbased nano-controlled release system was developed followed by loading TCA and EGF. The groups were defined as the control (CON); TCA-loaded nano-controlled release system (EXP1); TCA- and EGF- individually loaded nano-controlled release system (EXP2). At 24- and 48 hr culture, expression of 37 cell cycle genes was analyzed in human gingival fibroblasts. Correlations and the influential genes were also analyzed.
Results
Numerous genes such as cyclins (CCNDs), cell division cycles (CDCs), cyclin-dependent kinases (CDKs), E2F transcription factors (E2Fs), extracellular signal-regulated kinases (ERKs) and other cell cycle genes were significantly up-regulated in EXP1 and EXP2. Also, cell cycle arrest genes of E2F4, E2F5, and GADD45G were up-regulated but another cell cycle arrest gene SMAD4 was down-regulated. From the multiple regression analysis, CCNA2, CDK4, and ANAPC4 were determined as the most influential factors on the expression of ERK genes.
Conclusion
Application of TCA and EGF, using the HGC-based nano-controlled sequential release system significantly up-regulated various cell cycle progression genes, leading to the possibility of regenerating oral soft tissue via application of the proposed system.

Keyword

Cell cycle; Epidermal growth factor; Trichloroacetic acid
Full Text Links
  • JKAP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr