Korean J Physiol Pharmacol.  2021 Sep;25(5):413-423. 10.4196/kjpp.2021.25.5.413.

Curcumin attenuates renal ischemia reperfusion injury via JNK pathway with the involvement of p300/CBP-mediated histone acetylation

Affiliations
  • 1Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, P.R. China.
  • 2Department of Organ Transplantation, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, P.R. China.
  • 3Department of Organ Transplantation, Zhujiang Hospital of Southern Medical University, Guangzhou 510000, P.R. China.

Abstract

Apoptosis is proved responsible for renal damage during ischemia/reperfusion. The regulation for renal apoptosis induced by ischemia/reperfusion injury (IRI) has still been unclearly characterized to date. In the present study, we investigated the regulation of histone acetylation on IRI-induced renal apoptosis and the molecular mechanisms in rats with the application of curcumin possessing a variety of biological activities involving inhibition of apoptosis. Sprague–Dawley rats were randomized into four experimental groups (SHAM, IRI, curcumin, SP600125). Results showed that curcumin significantly decreased renal apoptosis and caspase-3/-9 expression and enhanced renal function in IRI rats. Treatment with curcumin in IRI rats also led to the decrease in expression of p300/cyclic AMP response element-binding protein (CBP) and activity of histone acetyltransferases (HATs). Reduced histone H3 lysine 9 (H3K9) acetylation was found near the promoter region of caspase-3/-9 after curcumin treatment. In a similar way, SP600125, an inhibitor of c-Jun N-terminal kinase (JNK), also attenuated renal apoptosis and enhanced renal function in IRI rats. In addition, SP600125 suppressed the binding level of p300/CBP and H3K9 acetylation near the promoter region of caspase-3/-9, and curcumin could inhibit JNK phosphorylation like SP600125. These results indicate that curcumin could attenuate renal IRI via JNK/p300/CBP-mediated anti-apoptosis signaling.

Keyword

Curcumin; Histone acetylation; MAP kinase signaling system; p300/CBP; Reperfusion Injury for Renal IRI

Figure

  • Fig. 1 Serum creatinine (Scr) and blood urea nitrogen (BUN) levels were used for assessing renal function. Scr (A) and BUN (B) levels in SHAM group, IRI group and IRI/Cur group. Statistical significance was determined by one-way ANOVA followed by Fisher’s Least Significant Difference test. n = 8 per group. IRI, ischemia/reperfusion injury; Cur, curcumin. *p < 0.05 vs. SHAM group; #p < 0.05 vs. IRI group.

  • Fig. 2 Histopathological investigation in the presence or absence of curcumin treatment. (A) Representative images of renal tissue sections stained with H&E and PAS. Black arrows indicate proximal tubule injuries mainly including brush border loss and flatten cells. (B) Semi-quantitative scoring of renal injuries based on morphological changes in renal tissue sections stained with H&E and PAS. n = 8 per group. IRI, ischemia/reperfusion injury; Cur, curcumin. *p < 0.05 vs. SHAM group; #p < 0.05 vs. IRI group.

  • Fig. 3 TUNEL assay was used for in situ detection of apoptosis in renal tissue sections. (A) Representative images of renal cell apoptosis in SHAM group, IRI group and IRI/Cur group. Red arrows indicate TUNEL-positive cells. (B) Apoptosis indexes of above groups. n = 8 per group. IRI, ischemia/reperfusion injury; Cur, curcumin. *p < 0.05 vs. SHAM group; #p < 0.05 vs. IRI group.

  • Fig. 4 Protein levels of caspae-3 and caspase-9 in IRI rats with or without curcumin treatment. (A) The protein levels of caspase-3/-9 and cleaved caspase-3/-9 in SHAM group, IRI group, and IRI/Cur group. (B) Quantification results of Western blotting. n = 8 per group. IRI, ischemia/reperfusion injury; Cur, curcumin. *p < 0.05 vs. SHAM group; #p < 0.05 vs. IRI group.

  • Fig. 5 Histone acetylation near the promoter region of caspae-3 and caspase-9. ChiP assay was used to detect acH3K9 level in the upstream region of (A) caspase-3 (1,000 bp) and (B) caspase-9 (1,000 bp). The enrichment of CREB-binding protein (CBP)/p300 in the promoter region of (C) caspase-3 and (D) caspase-9 in SHAM group, IRI group and IRI/Cur group. (E) The protein levels of p300 and CBP in above groups. (F) Quantification results of western blotting. Results are expressed as mean ± SD. Statistical significance was determined by One-way ANOVA followed by Fisher’s Least Significant Difference test. n = 8 per group. IRI, ischemia/reperfusion injury; Cur, curcumin. *p < 0.05 vs. SHAM group; #p < 0.05 vs. IRI group.

  • Fig. 6 c-Jun N-terminal kinase (JNK) and curcumin show similar effects on p300/CREB-binding protein (CBP) and caspase3/9 expression. (A) The protein levels of caspase-3/-9 and cleaved caspase-3/-9 in SHAM group, IRI group, IRI/SP group and IRI/Cur group. (B) The level of histone acetylation related proteins including p300/CBP and acetyl-histone H3 in above groups. (C) The protein level of phosphorylated JNK in above groups. Results are expressed as mean ± SD. Statistical significance was determined by One-way ANOVA followed by Fisher’s Least Significant Difference test. n = 8 per group. IRI, ischemia/reperfusion injury; SP, SP600125; Cur, curcumin. *p < 0.05 vs. SHAM group; #p < 0.05 vs. IRI group.

  • Fig. 7 c-Jun N-terminal kinase (JNK) and curcumin show similar effects on H3K9 acetylation near the promoter region of caspase-3/-9. The enrichment of acH3K9 in the promoter regions of (A) caspase-3 and (B) caspase-9 in SHAM group, IRI group, IRI/SP group and IRI/Cur group. The binding level of CREB-binding protein (CBP)/p300 to the promoter region of (C) caspase-3 and (D) caspase-9 in above groups. (E) histone acetyltransferase (HAT) activity in above groups. Results are expressed as mean ± SD. Statistical significance was determined by One-way ANOVA followed by Fisher’s Least Significant Difference test. n = 8 per group. IRI, ischemia/reperfusion injury; SP, SP600125; Cur, curcumin. *p < 0.05 vs. SHAM group; #p < 0.05 vs. IRI group.

  • Fig. 8 Schematic illustration of the protective mechanism of curcumin against renal ischemia/reperfusion injury (IRI). The mechanism involves suppression on activation of c-Jun N-terminal kinase (JNK) pathway via epigenetic regulation of p300/CREB-binding protein (CBP)-mediated histone acetylation. In the IRI rat model, JNK activation promotes the elevation in acH3K9 level at caspase-3/-9 gene promoters, as well as the occupancy of p300/CBP on the gene promoters. These events can enhance caspase-3/-9 expression, thereby resulting in renal cell apoptosis involved in IRI. Curcumin can attenuate these changes through its effects on JNK signaling and histone acetylation.


Reference

1. Saat TC, van den Akker EK, IJzermans JN, Dor FJ, de Bruin RW. 2016; Improving the outcome of kidney transplantation by ameliorating renal ischemia reperfusion injury: lost in translation? J Transl Med. 14:20. DOI: 10.1186/s12967-016-0767-2. PMID: 26791565. PMCID: PMC4721068.
Article
2. Ditonno P, Impedovo SV, Palazzo S, Bettocchi C, Gesualdo L, Grandaliano G, Selvaggi FP, Battaglia M. 2013; Effects of ischemia-reperfusion injury in kidney transplantation: risk factors and early and long-term outcomes in a single center. Transplant Proc. 45:2641–2644. DOI: 10.1016/j.transproceed.2013.07.025. PMID: 24034012.
Article
3. Rewa O, Bagshaw SM. 2014; Acute kidney injury-epidemiology, outcomes and economics. Nat Rev Nephrol. 10:193–207. DOI: 10.1038/nrneph.2013.282. PMID: 24445744.
Article
4. Hoste EAJ, Kellum JA, Selby NM, Zarbock A, Palevsky PM, Bagshaw SM, Goldstein SL, Cerdá J, Chawla LS. 2018; Global epidemiology and outcomes of acute kidney injury. Nat Rev Nephrol. 14:607–625. DOI: 10.1038/s41581-018-0052-0. PMID: 30135570.
Article
5. Kelly KJ. 2003; Distant effects of experimental renal ischemia/reperfusion injury. J Am Soc Nephrol. 14:1549–1558. DOI: 10.1097/01.ASN.0000064946.94590.46. PMID: 12761255.
Article
6. Awad AS, El-Sharif AA. 2011; Curcumin immune-mediated and anti-apoptotic mechanisms protect against renal ischemia/reperfusion and distant organ induced injuries. Int Immunopharmacol. 11:992–996. DOI: 10.1016/j.intimp.2011.02.015. PMID: 21354353.
Article
7. Bonegio R, Lieberthal W. 2002; Role of apoptosis in the pathogenesis of acute renal failure. Curr Opin Nephrol Hypertens. 11:301–308. DOI: 10.1097/00041552-200205000-00006. PMID: 11981260.
Article
8. Basile DP, Anderson MD, Sutton TA. 2012; Pathophysiology of acute kidney injury. Compr Physiol. 2:1303–1353. DOI: 10.1002/cphy.c110041. PMID: 23798302. PMCID: PMC3919808.
Article
9. Zhao Y, Ding C, Xue W, Ding X, Zheng J, Gao Y, Xia X, Li S, Liu J, Han F, Zhu F, Tian P. 2017; Genome-wide DNA methylation analysis in renal ischemia reperfusion injury. Gene. 610:32–43. DOI: 10.1016/j.gene.2017.02.005. PMID: 28189760.
Article
10. Fontecha-Barriuso M, Martin-Sanchez D, Ruiz-Andres O, Poveda J, Sanchez-Niño MD, Valiño-Rivas L, Ruiz-Ortega M, Ortiz A, Sanz AB. 2018; Targeting epigenetic DNA and histone modifications to treat kidney disease. Nephrol Dial Transplant. 33:1875–1886. DOI: 10.1093/ndt/gfy009. PMID: 29534238.
Article
11. Guo C, Dong G, Liang X, Dong Z. 2019; Epigenetic regulation in AKI and kidney repair: mechanisms and therapeutic implications. Nat Rev Nephrol. 15:220–239. DOI: 10.1038/s41581-018-0103-6. PMID: 30651611. PMCID: PMC7866490.
Article
12. Tessarz P, Kouzarides T. 2014; Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol. 15:703–708. DOI: 10.1038/nrm3890. PMID: 25315270.
Article
13. Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL. 2006; Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science. 311:844–847. DOI: 10.1126/science.1124000. PMID: 16469925.
Article
14. Tang J, Zhuang S. 2019; Histone acetylation and DNA methylation in ischemia/reperfusion injury. Clin Sci (Lond). 133:597–609. DOI: 10.1042/CS20180465. PMID: 30804072. PMCID: PMC7470454.
Article
15. Bomsztyk K, Denisenko O. 2013; Epigenetic alterations in acute kidney injury. Semin Nephrol. 33:327–340. DOI: 10.1016/j.semnephrol.2013.05.005. PMID: 24011575. PMCID: PMC3768006.
Article
16. Audia JE, Campbell RM. 2016; Histone modifications and cancer. Cold Spring Harb Perspect Biol. 8:a019521. DOI: 10.1101/cshperspect.a019521. PMID: 27037415. PMCID: PMC4817802.
Article
17. Bao L, Diao H, Dong N, Su X, Wang B, Mo Q, Yu H, Wang X, Chen C. 2016; Histone deacetylase inhibitor induces cell apoptosis and cycle arrest in lung cancer cells via mitochondrial injury and p53 up-acetylation. Cell Biol Toxicol. 32:469–482. DOI: 10.1007/s10565-016-9347-8. PMID: 27423454. PMCID: PMC5099365.
Article
18. Li D, Zeng Z. 2019; Epigenetic regulation of histone H3 in the process of hepatocellular tumorigenesis. Biosci Rep. 39:BSR20191815. DOI: 10.1042/BSR20191815. PMID: 31320544. PMCID: PMC6680372.
Article
19. Ammon HP, Wahl MA. 1991; Pharmacology of Curcuma longa. Planta Med. 57:1–7. DOI: 10.1055/s-2006-960004. PMID: 2062949.
20. Marcu MG, Jung YJ, Lee S, Chung EJ, Lee MJ, Trepel J, Neckers L. 2006; Curcumin is an inhibitor of p300 histone acetylatransferase. Med Chem. 2:169–174. DOI: 10.2174/157340606776056133. PMID: 16787365.
21. Wang X, Muhammad I, Sun X, Han M, Hamid S, Zhang X. 2018; Protective role of curcumin in ameliorating AFB1-induced apoptosis via mitochondrial pathway in liver cells. Mol Biol Rep. 45:881–891. DOI: 10.1007/s11033-018-4234-4. PMID: 29974318.
Article
22. Yu W, Zha W, Ke Z, Min Q, Li C, Sun H, Liu C. 2016; Curcumin protects neonatal rat cardiomyocytes against high glucose-induced apoptosis via PI3K/Akt signalling pathway. J Diabetes Res. 2016:4158591. DOI: 10.1155/2016/4158591. PMID: 26989696. PMCID: PMC4771910.
Article
23. Kunduzova OR, Bianchi P, Pizzinat N, Escourrou G, Seguelas MH, Parini A, Cambon C. 2002; Regulation of JNK/ERK activation, cell apoptosis, and tissue regeneration by monoamine oxidases after renal ischemia-reperfusion. FASEB J. 16:1129–1131. DOI: 10.1096/fj.01-1008fje. PMID: 12039844.
Article
24. Wu J, Zhang X, Nauta HJ, Lin Q, Li J, Fang L. 2008; JNK1 regulates histone acetylation in trigeminal neurons following chemical stimulation. Biochem Biophys Res Commun. 376:781–786. DOI: 10.1016/j.bbrc.2008.09.073. PMID: 18822271. PMCID: PMC2702224.
Article
25. Bayrak O, Uz E, Bayrak R, Turgut F, Atmaca AF, Sahin S, Yildirim ME, Kaya A, Cimentepe E, Akcay A. 2008; Curcumin protects against ischemia/reperfusion injury in rat kidneys. World J Urol. 26:285–291. DOI: 10.1007/s00345-008-0253-4. PMID: 18373094.
Article
26. Wu J, Pan X, Fu H, Zheng Y, Dai Y, Yin Y, Chen Q, Hao Q, Bao D, Hou D. 2017; Effect of curcumin on glycerol-induced acute kidney injury in rats. Sci Rep. 7:10114. DOI: 10.1038/s41598-017-10693-4. PMID: 28860665. PMCID: PMC5579036.
Article
27. Xu YF, Liu M, Peng B, Che JP, Zhang HM, Yan Y, Wang GC, Wu YC, Zheng JH. 2011; Protective effects of SP600125 on renal ischemia-reperfusion injury in rats. J Surg Res. 169:e77–e84. DOI: 10.1016/j.jss.2011.02.021. PMID: 21492872.
Article
28. Zhao W, Wu X, Wang Z, Pan B, Liu L, Liu L, Huang X, Tian J. 2020; Epigenetic regulation of phosphodiesterase 4d in restrictive cardiomyopathy mice with cTnI mutations. Sci China Life Sci. 63:563–570. DOI: 10.1007/s11427-018-9463-9. PMID: 30900165.
Article
29. Zhou W, Jiang D, Tian J, Liu L, Lu T, Huang X, Sun H. 2018; Acetylation of H3K4, H3K9, and H3K27 mediated by p300 regulates the expression of GATA4 in cardiocytes. Genes Dis. 6:318–325. DOI: 10.1016/j.gendis.2018.10.002. PMID: 32042871. PMCID: PMC6997570.
Article
30. Gupta SC, Patchva S, Aggarwal BB. 2013; Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J. 15:195–218. DOI: 10.1208/s12248-012-9432-8. PMID: 23143785. PMCID: PMC3535097.
Article
31. Hasan ST, Zingg JM, Kwan P, Noble T, Smith D, Meydani M. 2014; Curcumin modulation of high fat diet-induced atherosclerosis and steatohepatosis in LDL receptor deficient mice. Atherosclerosis. 232:40–51. DOI: 10.1016/j.atherosclerosis.2013.10.016. PMID: 24401215.
Article
32. Cekmen M, Ilbey YO, Ozbek E, Simsek A, Somay A, Ersoz C. 2009; Curcumin prevents oxidative renal damage induced by acetaminophen in rats. Food Chem Toxicol. 47:1480–1484. DOI: 10.1016/j.fct.2009.03.034. PMID: 19345714.
Article
33. Zhang J, Tang L, Li GS, Wang J. 2018; The anti-inflammatory effects of curcumin on renal ischemia-reperfusion injury in rats. Ren Fail. 40:680–686. DOI: 10.1080/0886022X.2018.1544565. PMID: 30741618. PMCID: PMC6282432.
Article
34. Ibrahim SG, El-Emam SZ, Mohamed EA, Abd Ellah MF. 2020; Dimethyl fumarate and curcumin attenuate hepatic ischemia/reperfusion injury via Nrf2/HO-1 activation and anti-inflammatory properties. Int Immunopharmacol. 80:106131. DOI: 10.1016/j.intimp.2019.106131. PMID: 31981960.
Article
35. Yeh CH, Chen TP, Wu YC, Lin YM, Jing Lin P. 2005; Inhibition of NFkappaB activation with curcumin attenuates plasma inflammatory cytokines surge and cardiomyocytic apoptosis following cardiac ischemia/reperfusion. J Surg Res. 125:109–116. DOI: 10.1016/j.jss.2004.11.009. PMID: 15836859.
36. Mokhtari-Zaer A, Marefati N, Atkin SL, Butler AE, Sahebkar A. 2018; The protective role of curcumin in myocardial ischemia-reperfusion injury. J Cell Physiol. 234:214–222. DOI: 10.1002/jcp.26848. PMID: 29968913.
Article
37. Boyanapalli SS, Kong AT. 2015; "Curcumin, the King of Spices": epigenetic regulatory mechanisms in the prevention of cancer, neurological, and inflammatory diseases. Curr Pharmacol Rep. 1:129–139. DOI: 10.1007/s40495-015-0018-x. PMID: 26457241. PMCID: PMC4596544.
Article
38. Jankauskas SS, Pevzner IB, Andrianova NV, Zorova LD, Popkov VA, Silachev DN, Kolosova NG, Plotnikov EY, Zorov DB. 2017; The age-associated loss of ischemic preconditioning in the kidney is accompanied by mitochondrial dysfunction, increased protein acetylation and decreased autophagy. Sci Rep. 7:44430. DOI: 10.1038/srep44430. PMID: 28294175. PMCID: PMC5353572.
Article
39. Zager RA, Johnson AC, Becker K. 2011; Acute unilateral ischemic renal injury induces progressive renal inflammation, lipid accumulation, histone modification, and "end-stage" kidney disease. Am J Physiol Renal Physiol. 301:F1334–F1345. DOI: 10.1152/ajprenal.00431.2011. PMID: 21921025. PMCID: PMC3233867.
Article
40. Bomsztyk K, Flanagin S, Mar D, Mikula M, Johnson A, Zager R, Denisenko O. 2013; Synchronous recruitment of epigenetic modifiers to endotoxin synergistically activated Tnf-α gene in acute kidney injury. PLoS One. 8:e70322. DOI: 10.1371/journal.pone.0070322. PMID: 23936185. PMCID: PMC3728219.
Article
41. Evankovich J, Cho SW, Zhang R, Cardinal J, Dhupar R, Zhang L, Klune JR, Zlotnicki J, Billiar T, Tsung A. 2010; High mobility group box 1 release from hepatocytes during ischemia and reperfusion injury is mediated by decreased histone deacetylase activity. J Biol Chem. 285:39888–39897. DOI: 10.1074/jbc.M110.128348. PMID: 20937823. PMCID: PMC3000970.
Article
42. Li J, Chen P, Sinogeeva N, Gorospe M, Wersto RP, Chrest FJ, Barnes J, Liu Y. 2002; Arsenic trioxide promotes histone H3 phosphoacetylation at the chromatin of CASPASE-10 in acute promyelocytic leukemia cells. J Biol Chem. 277:49504–49510. DOI: 10.1074/jbc.M207836200. PMID: 12388546.
Article
43. Yan X, Pan B, Lv T, Liu L, Zhu J, Shen W, Huang X, Tian J. 2017; Inhibition of histone acetylation by curcumin reduces alcohol-induced fetal cardiac apoptosis. J Biomed Sci. 24:1. DOI: 10.1186/s12929-016-0310-z. PMID: 28056970. PMCID: PMC5217636.
Article
44. Peng C, Zhang W, Zhao W, Zhu J, Huang X, Tian J. 2015; Alcohol-induced histone H3K9 hyperacetylation and cardiac hypertrophy are reversed by a histone acetylases inhibitor anacardic acid in developing murine hearts. Biochimie. 113:1–9. DOI: 10.1016/j.biochi.2015.03.012. PMID: 25797917.
Article
45. Tesch GH, Ma FY, Nikolic-Paterson DJ. 2016; ASK1: a new therapeutic target for kidney disease. Am J Physiol Renal Physiol. 311:F373–F381. DOI: 10.1152/ajprenal.00208.2016. PMID: 27226108.
Article
46. Kanellis J, Ma FY, Kandane-Rathnayake R, Dowling JP, Polkinghorne KR, Bennett BL, Friedman GC, Nikolic-Paterson DJ. 2010; JNK signalling in human and experimental renal ischaemia/reperfusion injury. Nephrol Dial Transplant. 25:2898–2908. DOI: 10.1093/ndt/gfq147. PMID: 20368303.
Article
47. Wang Y, Wang Y, Luo M, Wu H, Kong L, Xin Y, Cui W, Zhao Y, Wang J, Liang G, Miao L, Cai L. 2015; Novel curcumin analog C66 prevents diabetic nephropathy via JNK pathway with the involvement of p300/CBP-mediated histone acetylation. Biochim Biophys Acta. 1852:34–46. DOI: 10.1016/j.bbadis.2014.11.006. PMID: 25446993. PMCID: PMC4369325.
Article
48. Fiorillo C, Becatti M, Pensalfini A, Cecchi C, Lanzilao L, Donzelli G, Nassi N, Giannini L, Borchi E, Nassi P. 2008; Curcumin protects cardiac cells against ischemia-reperfusion injury: effects on oxidative stress, NF-kappaB, and JNK pathways. Free Radic Biol Med. 45:839–846. DOI: 10.1016/j.freeradbiomed.2008.06.013. PMID: 18638545.
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr