1. Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, et al. 2016; Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin. 66:271–289. DOI:
10.3322/caac.21349. PMID:
27253694.
Article
2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. 2018; Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. DOI:
10.3322/caac.21492. PMID:
30207593.
Article
5. Zehir A, Benayed R, Shah RH, Syed A, Middha S, Kim HR, et al. 2017; Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med. 23:703–713. DOI:
10.1038/nm.4333. PMID:
28481359. PMCID:
PMC5461196.
10. Fukuda A. 2015; Molecular mechanism of intraductal papillary mucinous neoplasm and intraductal papillary mucinous neoplasm-derived pancreatic ductal adenocarcinoma. J Hepatobiliary Pancreat Sci. 22:519–523. DOI:
10.1002/jhbp.246. PMID:
25900667.
Article
11. Fryzek JP, Garabrant DH, Schenk M, Kinnard M, Greenson JK, Sarkar FH. 2006; The association between selected risk factors for pancreatic cancer and the expression of p53 and K-ras codon 12 mutations. Int J Gastrointest Cancer. 37:139–145. DOI:
10.1007/s12029-007-9005-8. PMID:
18049799.
Article
12. Crous-Bou M, Porta M, López T, Jariod M, Malats N, Alguacil J, et al. 2007; Lifetime history of tobacco consumption and K-ras mutations in exocrine pancreatic cancer. Pancreas. 35:135–141. DOI:
10.1097/mpa.0b013e31805d8fa4. PMID:
17632319.
Article
15. Gukovsky I, Li N, Todoric J, Gukovskaya A, Karin M. 2013; Inflammation, autophagy, and obesity: common features in the pathogenesis of pancreatitis and pancreatic cancer. Gastroenterology. 144:1199–1209.e4. DOI:
10.1053/j.gastro.2013.02.007. PMID:
23622129. PMCID:
PMC3786712.
Article
17. Yang A, Rajeshkumar NV, Wang X, Yabuuchi S, Alexander BM, Chu GC, et al. 2014; Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov. 4:905–913. DOI:
10.1158/2159-8290.CD-14-0362. PMID:
24875860. PMCID:
PMC4125497.
Article
18. Diakopoulos KN, Lesina M, Wörmann S, Song L, Aichler M, Schild L, et al. 2015; Impaired autophagy induces chronic atrophic pancreatitis in mice via sex- and nutrition-dependent processes. Gastroenterology. 148:626–638.e17. DOI:
10.1053/j.gastro.2014.12.003. PMID:
25497209.
Article
19. Wörmann SM, Song L, Ai J, Diakopoulos KN, Kurkowski MU, Görgülü K, et al. 2016; Loss of P53 function activates JAK2-STAT3 signaling to promote pancreatic tumor growth, stroma modification, and gemcitabine resistance in mice and is associated with patient survival. Gastroenterology. 151:180–193.e12. DOI:
10.1053/j.gastro.2016.03.010. PMID:
27003603.
20. Rosenfeldt MT, O'Prey J, Morton JP, Nixon C, MacKay G, Mrowinska A, et al. 2013; p53 status determines the role of autophagy in pancreatic tumour development. Nature. 504:296–300. DOI:
10.1038/nature12865. PMID:
24305049.
Article
21. Voutsadakis IA. 2017; Obesity and diabetes as prognostic factors in patients with colorectal cancer. Diabetes Metab Syndr. 11 Suppl 1:S109–S114. DOI:
10.1016/j.dsx.2016.12.018. PMID:
27989518.
Article
22. Zhang AMY, Magrill J, de Winter TJJ, Hu X, Skovsø S, Schaeffer DF, et al. 2019; Endogenous hyperinsulinemia contributes to pancreatic cancer development. Cell Metab. 30:403–404. DOI:
10.1016/j.cmet.2019.07.003. PMID:
31378465.
Article
24. Muniz VP, Barnes JM, Paliwal S, Zhang X, Tang X, Chen S, et al. 2011; The ARF tumor suppressor inhibits tumor cell colonization independent of p53 in a novel mouse model of pancreatic ductal adenocarcinoma metastasis. Mol Cancer Res. 9:867–877. DOI:
10.1158/1541-7786.MCR-10-0475. PMID:
21636682. PMCID:
PMC3140613.
Article
30. Nayak G, Cooper GM. 2012; p53 is a major component of the transcriptional and apoptotic program regulated by PI 3-kinase/Akt/GSK3 signaling. Cell Death Dis. 3:e400. DOI:
10.1038/cddis.2012.138. PMID:
23059819. PMCID:
PMC3481126.
Article
31. Tang Y, Luo J, Zhang W, Gu W. 2006; Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell. 24:827–839. DOI:
10.1016/j.molcel.2006.11.021. PMID:
17189186.
Article
32. Voutsadakis IA. 2012; Ubiquitination and the Ubiquitin-Proteasome System as regulators of transcription and transcription factors in epithelial mesenchymal transition of cancer. Tumour Biol. 33:897–910. DOI:
10.1007/s13277-012-0355-x. PMID:
22399444.
33. Inoue S, Hao Z, Elia AJ, Cescon D, Zhou L, Silvester J, et al. 2013; Mule/Huwe1/Arf-BP1 suppresses Ras-driven tumorigenesis by preventing c-Myc/Miz1-mediated down-regulation of p21 and p15. Genes Dev. 27:1101–1114. DOI:
10.1101/gad.214577.113. PMID:
23699408. PMCID:
PMC3672645.
Article
34. Cassidy KB, Bang S, Kurokawa M, Gerber SA. 2020; Direct regulation of Chk1 protein stability by E3 ubiquitin ligase HUWE1. FEBS J. 287:1985–1999. DOI:
10.1111/febs.15132. PMID:
31713291. PMCID:
PMC7226928.
Article
36. Mueller S, Engleitner T, Maresch R, Zukowska M, Lange S, Kaltenbacher T, et al. 2018; Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes. Nature. 554:62–68. DOI:
10.1038/nature25459. PMID:
29364867. PMCID:
PMC6097607.
Article
40. Bryant KL, Stalnecker CA, Zeitouni D, Klomp JE, Peng S, Tikunov AP, et al. 2019; Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nat Med. 25:628–640. DOI:
10.1038/s41591-019-0368-8. PMID:
30833752. PMCID:
PMC6484853.
Article
41. Kinsey CG, Camolotto SA, Boespflug AM, Guillen KP, Foth M, Truong A, et al. 2019; Protective autophagy elicited by RAF→MEK→ERK inhibition suggests a treatment strategy for RAS-driven cancers. Nat Med. 25:620–627. DOI:
10.1038/s41591-019-0367-9. PMID:
30833748. PMCID:
PMC6452642.
Article
42. Sánchez-Martín P, Saito T, Komatsu M. 2019; p62/SQSTM1: 'Jack of all trades' in health and cancer. FEBS J. 286:8–23. DOI:
10.1111/febs.14712. PMID:
30499183. PMCID:
PMC7379270.
43. Yang S, Qiang L, Sample A, Shah P, He YY. 2017; NF-κB signaling activation induced by chloroquine requires autophagosome, p62 protein, and c-Jun N-terminal Kinase (JNK) signaling and promotes tumor cell resistance. J Biol Chem. 292:3379–3388. DOI:
10.1074/jbc.M116.756536. PMID:
28082672. PMCID:
PMC5336170.
Article
44. Kanayama M, Inoue M, Danzaki K, Hammer G, He YW, Shinohara ML. 2015; Autophagy enhances NFkB activity in specific tissue macrophages by sequestering A20 to boost antifungal immunity. Nat Commun. 6:5779. DOI:
10.1038/ncomms6779.
Article
45. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. 1995; Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 378:785–789. DOI:
10.1038/378785a0. PMID:
8524413.
Article
46. Voutsadakis IA. 2012; The ubiquitin-proteasome system and signal transduction pathways regulating epithelial mesenchymal transition of cancer. J Biomed Sci. 19:67. DOI:
10.1186/1423-0127-19-67. PMID:
22827778. PMCID:
PMC3418218.
Article
47. Pinho AV, Rooman I, Real FX. 2011; p53-dependent regulation of growth, epithelial-mesenchymal transition and stemness in normal pancreatic epithelial cells. Cell Cycle. 10:1312–1321. DOI:
10.4161/cc.10.8.15363. PMID:
21490434.
Article
48. Chang CJ, Chao CH, Xia W, Yang JY, Xiong Y, Li CW, et al. 2011; p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol. 13:317–323. DOI:
10.1038/ncb2173. PMID:
21336307. PMCID:
PMC3075845.
Article
51. Jain AK, Allton K, Iacovino M, Mahen E, Milczarek RJ, Zwaka TP, et al. 2012; p53 regulates cell cycle and microRNAs to promote differentiation of human embryonic stem cells. PLoS Biol. 10:e1001268. DOI:
10.1371/journal.pbio.1001268. PMID:
22389628. PMCID:
PMC3289600.
Article
52. Saleh AD, Savage JE, Cao L, Soule BP, Ly D, DeGraff W, et al. 2011; Cellular stress induced alterations in microRNA let-7a and let-7b expression are dependent on p53. PLoS One. 6:e24429. DOI:
10.1371/journal.pone.0024429. PMID:
22022355. PMCID:
PMC3191136.
Article
53. Liu Y, Wang D, Zhou M, Chen H, Wang H, Min J, et al. 2021; The KRAS/Lin28B axis maintains stemness of pancreatic cancer cells via the let-7i/TET3 pathway. Mol Oncol. 15:262–278. DOI:
10.1002/1878-0261.12836. PMID:
33107691. PMCID:
PMC7782082.
Article
55. Wang W, Friedland SC, Guo B, O'Dell MR, Alexander WB, Whitney-Miller CL, et al. 2019; ARID1A, a SWI/SNF subunit, is critical to acinar cell homeostasis and regeneration and is a barrier to transformation and epithelial-mesenchymal transition in the pancreas. Gut. 68:1245–1258. DOI:
10.1136/gutjnl-2017-315541. PMID:
30228219. PMCID:
PMC6551318.
Article
56. Lo HG, Jin RU, Sibbel G, Liu D, Karki A, Joens MS, et al. 2017; A single transcription factor is sufficient to induce and maintain secretory cell architecture. Genes Dev. 31:154–171. DOI:
10.1101/gad.285684.116. PMID:
28174210. PMCID:
PMC5322730.
Article
57. Roy N, Takeuchi KK, Ruggeri JM, Bailey P, Chang D, Li J, et al. 2016; PDX1 dynamically regulates pancreatic ductal adenocarcinoma initiation and maintenance. Genes Dev. 30:2669–2683. DOI:
10.1101/gad.291021.116. PMID:
28087712. PMCID:
PMC5238727.
Article
58. Gout J, Perkhofer L, Morawe M, Arnold F, Ihle M, Biber S, et al. 2021; Synergistic targeting and resistance to PARP inhibition in DNA damage repair-deficient pancreatic cancer. Gut. 70:743–760. DOI:
10.1136/gutjnl-2019-319970. PMID:
32873698. PMCID:
PMC7948173.
Article
62. Masetti M, Acquaviva G, Visani M, Tallini G, Fornelli A, Ragazzi M, et al. 2018; Long-term survivors of pancreatic adenocarcinoma show low rates of genetic alterations in KRAS, TP53 and SMAD4. Cancer Biomark. 21:323–334. DOI:
10.3233/CBM-170464. PMID:
29103024.
Article
63. Stravodimou A, Mazzoccoli G, Voutsadakis IA. 2012; Peroxisome proliferator-activated receptor gamma and regulations by the ubiquitin-proteasome system in pancreatic cancer. PPAR Res. 2012:367450. DOI:
10.1155/2012/367450. PMID:
23049538. PMCID:
PMC3459232.
Article
64. Khandekar MJ, Banks AS, Laznik-Bogoslavski D, White JP, Choi JH, Kazak L, et al. 2018; Noncanonical agonist PPARγ ligands modulate the response to DNA damage and sensitize cancer cells to cytotoxic chemotherapy. Proc Natl Acad Sci U S A. 115:561–566. DOI:
10.1073/pnas.1717776115. PMID:
29295932. PMCID:
PMC5776997.
Article
65. Deng X, Li Y, Gu S, Chen Y, Yu B, Su J, et al. 2020; p53 affects PGC1α stability through AKT/GSK-3β to enhance cisplatin sensitivity in non-small cell lung cancer. Front Oncol. 10:1252. DOI:
10.3389/fonc.2020.01252. PMID:
32974127. PMCID:
PMC7471661.
Article
66. Maniati E, Bossard M, Cook N, Candido JB, Emami-Shahri N, Nedospasov SA, et al. 2011; Crosstalk between the canonical NF-κB and Notch signaling pathways inhibits Pparγ expression and promotes pancreatic cancer progression in mice. J Clin Invest. 121:4685–4699. DOI:
10.1172/JCI45797. PMID:
22056382. PMCID:
PMC3225987.
Article
67. Fiorini C, Cordani M, Padroni C, Blandino G, Di Agostino S, Donadelli M. 2015; Mutant p53 stimulates chemoresistance of pancreatic adenocarcinoma cells to gemcitabine. Biochim Biophys Acta. 1853:89–100. DOI:
10.1016/j.bbamcr.2014.10.003. PMID:
25311384.
Article
68. Wiegering A, Matthes N, Mühling B, Koospal M, Quenzer A, Peter S, et al. 2017; Reactivating p53 and inducing tumor apoptosis (RITA) enhances the response of RITA-sensitive colorectal cancer cells to chemotherapeutic agents 5-fluorouracil and oxaliplatin. Neoplasia. 19:301–309. DOI:
10.1016/j.neo.2017.01.007. PMID:
28284059. PMCID:
PMC5345961.
Article
69. Hirano K, Okumura T, Shimada Y, Watanabe T, Yamaguchi T, Nagata T, et al. 2015; Establishment and characterization of two novel human pancreatic carcinoma cell lines. Anticancer Res. 35:3821–3828. PMID:
26124327.
70. Sinn M, Sinn BV, Treue D, Keilholz U, Damm F, Schmuck R, et al. 2020; TP53 mutations predict sensitivity to adjuvant gemcitabine in patients with pancreatic ductal adenocarcinoma: next-generation sequencing results from the CONKO-001 trial. Clin Cancer Res. 26:3732–3739. DOI:
10.1158/1078-0432.CCR-19-3034. PMID:
32234756.
Article
71. Conradt L, Henrich A, Wirth M, Reichert M, Lesina M, Algül H, et al. 2013; Mdm2 inhibitors synergize with topoisomerase II inhibitors to induce p53-independent pancreatic cancer cell death. Int J Cancer. 132:2248–2257. DOI:
10.1002/ijc.27916. PMID:
23115126.
Article
72. Alt JR, Bouska A, Fernandez MR, Cerny RL, Xiao H, Eischen CM. 2005; Mdm2 binds to Nbs1 at sites of DNA damage and regulates double strand break repair. J Biol Chem. 280:18771–18781. DOI:
10.1074/jbc.M413387200. PMID:
15734743.
Article
73. Saison-Ridinger M, DelGiorno KE, Zhang T, Kraus A, French R, Jaquish D, et al. 2017; Reprogramming pancreatic stellate cells via p53 activation: a putative target for pancreatic cancer therapy. PLoS One. 12:e0189051. DOI:
10.1371/journal.pone.0189051. PMID:
29211796. PMCID:
PMC5718507.
Article
74. Lou K, Steri V, Ge AY, Hwang YC, Yogodzinski CH, Shkedi AR, et al. 2019; KRASG12C inhibition produces a driver-limited state revealing collateral dependencies. Sci Signal. 12:eaaw9450. DOI:
10.1126/scisignal.aaw9450. PMID:
31138768. PMCID:
PMC6871662.
Article
75. Lankes K, Hassan Z, Doffo MJ, Schneeweis C, Lier S, Öllinger R, et al. 2020; Targeting the ubiquitin-proteasome system in a pancreatic cancer subtype with hyperactive MYC. Mol Oncol. 14:3048–3064. DOI:
10.1002/1878-0261.12835. PMID:
33099868. PMCID:
PMC7718946.
Article
76. Alberts SR, Foster NR, Morton RF, Kugler J, Schaefer P, Wiesenfeld M, et al. 2005; PS-341 and gemcitabine in patients with metastatic pancreatic adenocarcinoma: a North Central Cancer Treatment Group (NCCTG) randomized phase II study. Ann Oncol. 16:1654–1661. DOI:
10.1093/annonc/mdi324. PMID:
16085692.
Article
78. Wolpin BM, Rubinson DA, Wang X, Chan JA, Cleary JM, Enzinger PC, et al. 2014; Phase II and pharmacodynamic study of autophagy inhibition using hydroxychloroquine in patients with metastatic pancreatic adenocarcinoma. Oncologist. 19:637–638. DOI:
10.1634/theoncologist.2014-0086. PMID:
24821822. PMCID:
PMC4041680.
Article
79. Karasic TB, O'Hara MH, Loaiza-Bonilla A, Reiss KA, Teitelbaum UR, Borazanci E, et al. 2019; Effect of gemcitabine and nab-paclitaxel with or without hydroxychloroquine on patients with advanced pancreatic cancer: a phase 2 randomized clinical trial. JAMA Oncol. 5:993–998. DOI:
10.1001/jamaoncol.2019.0684. PMID:
31120501. PMCID:
PMC6547080.
82. Matsushima S, Okita N, Oku M, Nagai W, Kobayashi M, Higami Y. 2011; An Mdm2 antagonist, Nutlin-3a, induces p53-dependent and proteasome-mediated poly(ADP-ribose) polymerase1 degradation in mouse fibroblasts. Biochem Biophys Res Commun. 407:557–561. DOI:
10.1016/j.bbrc.2011.03.061. PMID:
21419099.
Article
83. Kobayashi M, Ishizaki Y, Owaki M, Matsumoto Y, Kakiyama Y, Hoshino S, et al. 2020; Nutlin-3a suppresses poly (ADP-ribose) polymerase 1 by mechanisms different from conventional PARP1 suppressors in a human breast cancer cell line. Oncotarget. 11:1653–1665. DOI:
10.18632/oncotarget.27581. PMID:
32405340. PMCID:
PMC7210013.
Article
84. Zanjirband M, Curtin N, Edmondson RJ, Lunec J. 2017; Combination treatment with rucaparib (Rubraca) and MDM2 inhibitors, Nutlin-3 and RG7388, has synergistic and dose reduction potential in ovarian cancer. Oncotarget. 8:69779–69796. DOI:
10.18632/oncotarget.19266. PMID:
29050241. PMCID:
PMC5642516.
Article
85. Vena F, Jia R, Esfandiari A, Garcia-Gomez JJ, Rodriguez-Justo M, Ma J, et al. 2018; MEK inhibition leads to BRCA2 downregulation and sensitization to DNA damaging agents in pancreas and ovarian cancer models. Oncotarget. 9:11592–11603. DOI:
10.18632/oncotarget.24294. PMID:
29545922. PMCID:
PMC5837749.
Article
87. Bhutani MS, Cazacu IM, Roy-Chowdhuri S, Maitra A, Pishvaian MJ. 2020; Upfront molecular profiling of pancreatic cancer patients - an idea whose time has come. Pancreatology. 20:391–393. DOI:
10.1016/j.pan.2020.01.017. PMID:
32192904.
Article