Ann Hepatobiliary Pancreat Surg.  2021 Aug;25(3):315-327. 10.14701/ahbps.2021.25.3.315.

Mutations of p53 associated with pancreatic cancer and therapeutic implications

Affiliations
  • 1Algoma District Cancer Program, Sault Area Hospital, Sault Ste. Marie, ON, Canada,
  • 2Section of Internal Medicine, Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, ON, Canada

Abstract

Pancreatic adenocarcinoma is a malignancy with rising incidence and grim prognosis. Despite improvements in therapeutics for treating metastatic pancreatic cancer, this disease is invariably fatal with survival time less than a few years. New molecular understanding of the pathogenesis of pancreatic adenocarcinoma based on efforts led by The Cancer Genome Atlas and other groups has elucidated the landscape of this disease and started to produce therapeutic results, leading to the first introduction of targeted therapies for subsets of pancreatic cancers bearing specific molecular lesions such as BRCA mutations. These efforts have highlighted that subsets of pancreatic cancers are particularly sensitive to chemotherapy. The most common molecular lesions in pancreatic adenocarcinomas are mutations in an oncogene KRAS and the TP53 gene that encodes for tumor suppressor protein p53. This paper will review the landscape of pancreatic cancers, focusing on mutations of p53, a major tumor suppressor protein, in pancreatic cancers and possible therapeutic repercussions.

Keyword

Pancreatic adenocarcinoma; TP53; Mutation; Gain of function; Targeted therapies

Figure

  • Fig. 1 Loss of wild type p53 (wt p53) deprives cells of multifaceted tumor, thus suppressing functions of this seminal tumor suppressor. In addition, gain of function mutations of p53 (mt p53) can promote cancer by several mechanisms.

  • Fig. 2 Promoters of pancreatic carcinogenesis include smoking, obesity with associated hyperinsulinemia, and inflammation. p53 acts as a break in several steps of the pathophysiology that links these conditions to cancer progression. These steps include inhibition of NF-κB, inhibition of pro-carcinogenic effects of hyperinsulinemia, and decrease of mutation burden through its function as a guardian of genome integrity. TMB, tumor mutation burden.

  • Fig. 3 Compared with cancers having TP53 mutations, pancreatic cancers with intact TP53 have a lower frequency of CDKN2A homo-deletions and mutations but a higher frequency of mutations in genes involved in DNA damage response and microsatellite instability or mutations in polymerases epsilon and delta1 (POLE and POLD1). Data are from TCGA. TP53 mut, TP53 mutated cancers; TP53 wt, TP53 wild-type cancers.

  • Fig. 4 Regulation of p53 in pancreatic cancer. In addition to TP53 mutations, p53 function is inhibited by increased activity of ubiquitin ligase MDM2 and possibly other ubiquitin ligases known to promote proteasome degradation of p53. A small subset of pancreatic cancers might have mutations in p53 activating kinases.

  • Fig. 5 The network of autophagy and p62/SQSTM1 is interconnected with networks activated in pancreatic cancer. The output of these regulations culminates in p53 inhibition.

  • Fig. 6 Wild-type p53 (wt p53) inhibits pluripotency and epithelial to mesenchymal transition (EMT) through transcription of several microRNAs that are translational inhibitors of key factors of these processes. In contrast, activated KRAS can inhibit let7 by activating LIN28B.


Reference

1. Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, et al. 2016; Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin. 66:271–289. DOI: 10.3322/caac.21349. PMID: 27253694.
Article
2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. 2018; Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. DOI: 10.3322/caac.21492. PMID: 30207593.
Article
3. Cancer Genome Atlas Research Network. 2017; Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell. 32:185–203.e13. DOI: 10.1016/j.ccell.2017.07.007. PMID: 28810144. PMCID: PMC5964983.
4. AACR Project GENIE Consortium. 2017; AACR Project GENIE: powering precision medicine through an international consortium. Cancer Discov. 7:818–831. DOI: 10.1158/2159-8290.CD-17-0151. PMID: 28572459. PMCID: PMC5611790.
5. Zehir A, Benayed R, Shah RH, Syed A, Middha S, Kim HR, et al. 2017; Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med. 23:703–713. DOI: 10.1038/nm.4333. PMID: 28481359. PMCID: PMC5461196.
6. Zhang C, Liu J, Xu D, Zhang T, Hu W, Feng Z. 2020; Gain-of-function mutant p53 in cancer progression and therapy. J Mol Cell Biol. 12:674–687. DOI: 10.1093/jmcb/mjaa040. PMID: 32722796. PMCID: PMC7749743.
Article
7. Amelio I, Melino G. 2020; Context is everything: extrinsic signalling and gain-of-function p53 mutants. Cell Death Discov. 6:16. DOI: 10.1038/s41420-020-0251-x. PMID: 32218993. PMCID: PMC7090043.
Article
8. Voutsadakis IA. 2007; Pathogenesis of colorectal carcinoma and therapeutic implications: the roles of the ubiquitin-proteasome system and Cox-2. J Cell Mol Med. 11:252–285. DOI: 10.1111/j.1582-4934.2007.00032.x. PMID: 17488476. PMCID: PMC3822826.
Article
9. Voutsadakis IA. 2008; The ubiquitin-proteasome system in colorectal cancer. Biochim Biophys Acta. 1782:800–808. DOI: 10.1016/j.bbadis.2008.06.007. PMID: 18619533.
Article
10. Fukuda A. 2015; Molecular mechanism of intraductal papillary mucinous neoplasm and intraductal papillary mucinous neoplasm-derived pancreatic ductal adenocarcinoma. J Hepatobiliary Pancreat Sci. 22:519–523. DOI: 10.1002/jhbp.246. PMID: 25900667.
Article
11. Fryzek JP, Garabrant DH, Schenk M, Kinnard M, Greenson JK, Sarkar FH. 2006; The association between selected risk factors for pancreatic cancer and the expression of p53 and K-ras codon 12 mutations. Int J Gastrointest Cancer. 37:139–145. DOI: 10.1007/s12029-007-9005-8. PMID: 18049799.
Article
12. Crous-Bou M, Porta M, López T, Jariod M, Malats N, Alguacil J, et al. 2007; Lifetime history of tobacco consumption and K-ras mutations in exocrine pancreatic cancer. Pancreas. 35:135–141. DOI: 10.1097/mpa.0b013e31805d8fa4. PMID: 17632319.
Article
13. Blackford A, Parmigiani G, Kensler TW, Wolfgang C, Jones S, Zhang X, et al. 2009; Genetic mutations associated with cigarette smoking in pancreatic cancer. Cancer Res. 69:3681–3688. DOI: 10.1158/0008-5472.CAN-09-0015. PMID: 19351817. PMCID: PMC2669837.
Article
14. Das S, Berlin J, Cardin D. 2018; Harnessing the immune system in pancreatic cancer. Curr Treat Options Oncol. 19:48. DOI: 10.1007/s11864-018-0566-5. PMID: 30128712. PMCID: PMC6524529.
Article
15. Gukovsky I, Li N, Todoric J, Gukovskaya A, Karin M. 2013; Inflammation, autophagy, and obesity: common features in the pathogenesis of pancreatitis and pancreatic cancer. Gastroenterology. 144:1199–1209.e4. DOI: 10.1053/j.gastro.2013.02.007. PMID: 23622129. PMCID: PMC3786712.
Article
16. Green DR, Galluzzi L, Kroemer G. 2011; Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science. 333:1109–1112. DOI: 10.1126/science.1201940. PMID: 21868666. PMCID: PMC3405151.
Article
17. Yang A, Rajeshkumar NV, Wang X, Yabuuchi S, Alexander BM, Chu GC, et al. 2014; Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov. 4:905–913. DOI: 10.1158/2159-8290.CD-14-0362. PMID: 24875860. PMCID: PMC4125497.
Article
18. Diakopoulos KN, Lesina M, Wörmann S, Song L, Aichler M, Schild L, et al. 2015; Impaired autophagy induces chronic atrophic pancreatitis in mice via sex- and nutrition-dependent processes. Gastroenterology. 148:626–638.e17. DOI: 10.1053/j.gastro.2014.12.003. PMID: 25497209.
Article
19. Wörmann SM, Song L, Ai J, Diakopoulos KN, Kurkowski MU, Görgülü K, et al. 2016; Loss of P53 function activates JAK2-STAT3 signaling to promote pancreatic tumor growth, stroma modification, and gemcitabine resistance in mice and is associated with patient survival. Gastroenterology. 151:180–193.e12. DOI: 10.1053/j.gastro.2016.03.010. PMID: 27003603.
20. Rosenfeldt MT, O'Prey J, Morton JP, Nixon C, MacKay G, Mrowinska A, et al. 2013; p53 status determines the role of autophagy in pancreatic tumour development. Nature. 504:296–300. DOI: 10.1038/nature12865. PMID: 24305049.
Article
21. Voutsadakis IA. 2017; Obesity and diabetes as prognostic factors in patients with colorectal cancer. Diabetes Metab Syndr. 11 Suppl 1:S109–S114. DOI: 10.1016/j.dsx.2016.12.018. PMID: 27989518.
Article
22. Zhang AMY, Magrill J, de Winter TJJ, Hu X, Skovsø S, Schaeffer DF, et al. 2019; Endogenous hyperinsulinemia contributes to pancreatic cancer development. Cell Metab. 30:403–404. DOI: 10.1016/j.cmet.2019.07.003. PMID: 31378465.
Article
23. Maddipati R, Stanger BZ. 2015; Pancreatic Cancer Metastases Harbor Evidence of Polyclonality. Cancer Discov. 5:1086–1097. DOI: 10.1158/2159-8290.CD-15-0120. PMID: 26209539. PMCID: PMC4657730.
Article
24. Muniz VP, Barnes JM, Paliwal S, Zhang X, Tang X, Chen S, et al. 2011; The ARF tumor suppressor inhibits tumor cell colonization independent of p53 in a novel mouse model of pancreatic ductal adenocarcinoma metastasis. Mol Cancer Res. 9:867–877. DOI: 10.1158/1541-7786.MCR-10-0475. PMID: 21636682. PMCID: PMC3140613.
Article
25. Hayes AJ, Skouras C, Haugk B, Charnley RM. 2015; Keap1-Nrf2 signalling in pancreatic cancer. Int J Biochem Cell Biol. 65:288–299. DOI: 10.1016/j.biocel.2015.06.017. PMID: 26117456.
Article
26. Voutsadakis IA. 2017; Proteasome expression and activity in cancer and cancer stem cells. Tumour Biol. 39:1010428317692248. DOI: 10.1177/1010428317692248. PMID: 28345458.
Article
27. Todoric J, Antonucci L, Di Caro G, Li N, Wu X, Lytle NK, et al. 2017; Stress-activated NRF2-MDM2 cascade controls neoplastic progression in pancreas. Cancer Cell. 32:824–839.e8. DOI: 10.1016/j.ccell.2017.10.011. PMID: 29153842. PMCID: PMC5730340.
Article
28. Torrente L, DeNicola GM. 2017; Stressing out PanIN: NRF2 pushes over the edge. Cancer Cell. 32:723–725. DOI: 10.1016/j.ccell.2017.11.014. PMID: 29232549.
Article
29. Zhang B, Xu J, Li C, Shi S, Ji S, Xu W, et al. 2016; MBD1 is an epigenetic regulator of KEAP1 in pancreatic cancer. Curr Mol Med. 16:404–411. DOI: 10.2174/1566524016666160316154150. PMID: 26980696.
Article
30. Nayak G, Cooper GM. 2012; p53 is a major component of the transcriptional and apoptotic program regulated by PI 3-kinase/Akt/GSK3 signaling. Cell Death Dis. 3:e400. DOI: 10.1038/cddis.2012.138. PMID: 23059819. PMCID: PMC3481126.
Article
31. Tang Y, Luo J, Zhang W, Gu W. 2006; Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell. 24:827–839. DOI: 10.1016/j.molcel.2006.11.021. PMID: 17189186.
Article
32. Voutsadakis IA. 2012; Ubiquitination and the Ubiquitin-Proteasome System as regulators of transcription and transcription factors in epithelial mesenchymal transition of cancer. Tumour Biol. 33:897–910. DOI: 10.1007/s13277-012-0355-x. PMID: 22399444.
33. Inoue S, Hao Z, Elia AJ, Cescon D, Zhou L, Silvester J, et al. 2013; Mule/Huwe1/Arf-BP1 suppresses Ras-driven tumorigenesis by preventing c-Myc/Miz1-mediated down-regulation of p21 and p15. Genes Dev. 27:1101–1114. DOI: 10.1101/gad.214577.113. PMID: 23699408. PMCID: PMC3672645.
Article
34. Cassidy KB, Bang S, Kurokawa M, Gerber SA. 2020; Direct regulation of Chk1 protein stability by E3 ubiquitin ligase HUWE1. FEBS J. 287:1985–1999. DOI: 10.1111/febs.15132. PMID: 31713291. PMCID: PMC7226928.
Article
35. Voutsadakis IA. 2013; Ubiquitin- and ubiquitin-like proteins-conjugating enzymes (E2s) in breast cancer. Mol Biol Rep. 40:2019–2034. DOI: 10.1007/s11033-012-2261-0. PMID: 23187732.
Article
36. Mueller S, Engleitner T, Maresch R, Zukowska M, Lange S, Kaltenbacher T, et al. 2018; Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes. Nature. 554:62–68. DOI: 10.1038/nature25459. PMID: 29364867. PMCID: PMC6097607.
Article
37. Alvarez-Meythaler JG, Garcia-Mayea Y, Mir C, Kondoh H, LLeonart ME. 2020; Autophagy takes center stage as a possible cancer hallmark. Front Oncol. 10:586069. DOI: 10.3389/fonc.2020.586069. PMID: 33194736. PMCID: PMC7643020.
Article
38. Piffoux M, Eriau E, Cassier PA. 2021; Autophagy as a therapeutic target in pancreatic cancer. Br J Cancer. 124:333–344. DOI: 10.1038/s41416-020-01039-5. PMID: 32929194. PMCID: PMC7852577.
Article
39. Yamamoto K, Venida A, Perera RM, Kimmelman AC. 2020; Selective autophagy of MHC-I promotes immune evasion of pancreatic cancer. Autophagy. 16:1524–1525. DOI: 10.1080/15548627.2020.1769973. PMID: 32459143. PMCID: PMC7469632.
Article
40. Bryant KL, Stalnecker CA, Zeitouni D, Klomp JE, Peng S, Tikunov AP, et al. 2019; Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nat Med. 25:628–640. DOI: 10.1038/s41591-019-0368-8. PMID: 30833752. PMCID: PMC6484853.
Article
41. Kinsey CG, Camolotto SA, Boespflug AM, Guillen KP, Foth M, Truong A, et al. 2019; Protective autophagy elicited by RAF→MEK→ERK inhibition suggests a treatment strategy for RAS-driven cancers. Nat Med. 25:620–627. DOI: 10.1038/s41591-019-0367-9. PMID: 30833748. PMCID: PMC6452642.
Article
42. Sánchez-Martín P, Saito T, Komatsu M. 2019; p62/SQSTM1: 'Jack of all trades' in health and cancer. FEBS J. 286:8–23. DOI: 10.1111/febs.14712. PMID: 30499183. PMCID: PMC7379270.
43. Yang S, Qiang L, Sample A, Shah P, He YY. 2017; NF-κB signaling activation induced by chloroquine requires autophagosome, p62 protein, and c-Jun N-terminal Kinase (JNK) signaling and promotes tumor cell resistance. J Biol Chem. 292:3379–3388. DOI: 10.1074/jbc.M116.756536. PMID: 28082672. PMCID: PMC5336170.
Article
44. Kanayama M, Inoue M, Danzaki K, Hammer G, He YW, Shinohara ML. 2015; Autophagy enhances NFkB activity in specific tissue macrophages by sequestering A20 to boost antifungal immunity. Nat Commun. 6:5779. DOI: 10.1038/ncomms6779.
Article
45. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. 1995; Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 378:785–789. DOI: 10.1038/378785a0. PMID: 8524413.
Article
46. Voutsadakis IA. 2012; The ubiquitin-proteasome system and signal transduction pathways regulating epithelial mesenchymal transition of cancer. J Biomed Sci. 19:67. DOI: 10.1186/1423-0127-19-67. PMID: 22827778. PMCID: PMC3418218.
Article
47. Pinho AV, Rooman I, Real FX. 2011; p53-dependent regulation of growth, epithelial-mesenchymal transition and stemness in normal pancreatic epithelial cells. Cell Cycle. 10:1312–1321. DOI: 10.4161/cc.10.8.15363. PMID: 21490434.
Article
48. Chang CJ, Chao CH, Xia W, Yang JY, Xiong Y, Li CW, et al. 2011; p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol. 13:317–323. DOI: 10.1038/ncb2173. PMID: 21336307. PMCID: PMC3075845.
Article
49. Voutsadakis IA. 2014; The chemosensitivity of testicular germ cell tumors. Cell Oncol (Dordr). 37:79–94. DOI: 10.1007/s13402-014-0168-6. PMID: 24692098.
Article
50. Ji Q, Hao X, Zhang M, Tang W, Yang M, Li L, et al. 2009; MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One. 4:e6816. DOI: 10.1371/journal.pone.0006816. PMID: 19714243. PMCID: PMC2729376.
Article
51. Jain AK, Allton K, Iacovino M, Mahen E, Milczarek RJ, Zwaka TP, et al. 2012; p53 regulates cell cycle and microRNAs to promote differentiation of human embryonic stem cells. PLoS Biol. 10:e1001268. DOI: 10.1371/journal.pbio.1001268. PMID: 22389628. PMCID: PMC3289600.
Article
52. Saleh AD, Savage JE, Cao L, Soule BP, Ly D, DeGraff W, et al. 2011; Cellular stress induced alterations in microRNA let-7a and let-7b expression are dependent on p53. PLoS One. 6:e24429. DOI: 10.1371/journal.pone.0024429. PMID: 22022355. PMCID: PMC3191136.
Article
53. Liu Y, Wang D, Zhou M, Chen H, Wang H, Min J, et al. 2021; The KRAS/Lin28B axis maintains stemness of pancreatic cancer cells via the let-7i/TET3 pathway. Mol Oncol. 15:262–278. DOI: 10.1002/1878-0261.12836. PMID: 33107691. PMCID: PMC7782082.
Article
54. Ghosh B, Leach SD. 2011; p53: guardian of pancreatic epithelial identity. Cell Cycle. 10:1717. DOI: 10.4161/cc.10.11.15686. PMID: 21597331. PMCID: PMC3233485.
Article
55. Wang W, Friedland SC, Guo B, O'Dell MR, Alexander WB, Whitney-Miller CL, et al. 2019; ARID1A, a SWI/SNF subunit, is critical to acinar cell homeostasis and regeneration and is a barrier to transformation and epithelial-mesenchymal transition in the pancreas. Gut. 68:1245–1258. DOI: 10.1136/gutjnl-2017-315541. PMID: 30228219. PMCID: PMC6551318.
Article
56. Lo HG, Jin RU, Sibbel G, Liu D, Karki A, Joens MS, et al. 2017; A single transcription factor is sufficient to induce and maintain secretory cell architecture. Genes Dev. 31:154–171. DOI: 10.1101/gad.285684.116. PMID: 28174210. PMCID: PMC5322730.
Article
57. Roy N, Takeuchi KK, Ruggeri JM, Bailey P, Chang D, Li J, et al. 2016; PDX1 dynamically regulates pancreatic ductal adenocarcinoma initiation and maintenance. Genes Dev. 30:2669–2683. DOI: 10.1101/gad.291021.116. PMID: 28087712. PMCID: PMC5238727.
Article
58. Gout J, Perkhofer L, Morawe M, Arnold F, Ihle M, Biber S, et al. 2021; Synergistic targeting and resistance to PARP inhibition in DNA damage repair-deficient pancreatic cancer. Gut. 70:743–760. DOI: 10.1136/gutjnl-2019-319970. PMID: 32873698. PMCID: PMC7948173.
Article
59. Ischenko I, Zhi J, Moll UM, Nemajerova A, Petrenko O. 2013; Direct reprogramming by oncogenic Ras and Myc. Proc Natl Acad Sci U S A. 110:3937–3942. DOI: 10.1073/pnas.1219592110. PMID: 23431158. PMCID: PMC3593888.
Article
60. Lancho O, Herranz D. 2018; The MYC enhancer-ome: long-range transcriptional regulation of MYC in cancer. Trends Cancer. 4:810–822. DOI: 10.1016/j.trecan.2018.10.003. PMID: 30470303. PMCID: PMC6260942.
Article
61. Voutsadakis IA. 2021; Amplification of 8p11. 23 in cancers and the role of amplicon genes. Life Sci. 264:118729. DOI: 10.1016/j.lfs.2020.118729. PMID: 33166592.
62. Masetti M, Acquaviva G, Visani M, Tallini G, Fornelli A, Ragazzi M, et al. 2018; Long-term survivors of pancreatic adenocarcinoma show low rates of genetic alterations in KRAS, TP53 and SMAD4. Cancer Biomark. 21:323–334. DOI: 10.3233/CBM-170464. PMID: 29103024.
Article
63. Stravodimou A, Mazzoccoli G, Voutsadakis IA. 2012; Peroxisome proliferator-activated receptor gamma and regulations by the ubiquitin-proteasome system in pancreatic cancer. PPAR Res. 2012:367450. DOI: 10.1155/2012/367450. PMID: 23049538. PMCID: PMC3459232.
Article
64. Khandekar MJ, Banks AS, Laznik-Bogoslavski D, White JP, Choi JH, Kazak L, et al. 2018; Noncanonical agonist PPARγ ligands modulate the response to DNA damage and sensitize cancer cells to cytotoxic chemotherapy. Proc Natl Acad Sci U S A. 115:561–566. DOI: 10.1073/pnas.1717776115. PMID: 29295932. PMCID: PMC5776997.
Article
65. Deng X, Li Y, Gu S, Chen Y, Yu B, Su J, et al. 2020; p53 affects PGC1α stability through AKT/GSK-3β to enhance cisplatin sensitivity in non-small cell lung cancer. Front Oncol. 10:1252. DOI: 10.3389/fonc.2020.01252. PMID: 32974127. PMCID: PMC7471661.
Article
66. Maniati E, Bossard M, Cook N, Candido JB, Emami-Shahri N, Nedospasov SA, et al. 2011; Crosstalk between the canonical NF-κB and Notch signaling pathways inhibits Pparγ expression and promotes pancreatic cancer progression in mice. J Clin Invest. 121:4685–4699. DOI: 10.1172/JCI45797. PMID: 22056382. PMCID: PMC3225987.
Article
67. Fiorini C, Cordani M, Padroni C, Blandino G, Di Agostino S, Donadelli M. 2015; Mutant p53 stimulates chemoresistance of pancreatic adenocarcinoma cells to gemcitabine. Biochim Biophys Acta. 1853:89–100. DOI: 10.1016/j.bbamcr.2014.10.003. PMID: 25311384.
Article
68. Wiegering A, Matthes N, Mühling B, Koospal M, Quenzer A, Peter S, et al. 2017; Reactivating p53 and inducing tumor apoptosis (RITA) enhances the response of RITA-sensitive colorectal cancer cells to chemotherapeutic agents 5-fluorouracil and oxaliplatin. Neoplasia. 19:301–309. DOI: 10.1016/j.neo.2017.01.007. PMID: 28284059. PMCID: PMC5345961.
Article
69. Hirano K, Okumura T, Shimada Y, Watanabe T, Yamaguchi T, Nagata T, et al. 2015; Establishment and characterization of two novel human pancreatic carcinoma cell lines. Anticancer Res. 35:3821–3828. PMID: 26124327.
70. Sinn M, Sinn BV, Treue D, Keilholz U, Damm F, Schmuck R, et al. 2020; TP53 mutations predict sensitivity to adjuvant gemcitabine in patients with pancreatic ductal adenocarcinoma: next-generation sequencing results from the CONKO-001 trial. Clin Cancer Res. 26:3732–3739. DOI: 10.1158/1078-0432.CCR-19-3034. PMID: 32234756.
Article
71. Conradt L, Henrich A, Wirth M, Reichert M, Lesina M, Algül H, et al. 2013; Mdm2 inhibitors synergize with topoisomerase II inhibitors to induce p53-independent pancreatic cancer cell death. Int J Cancer. 132:2248–2257. DOI: 10.1002/ijc.27916. PMID: 23115126.
Article
72. Alt JR, Bouska A, Fernandez MR, Cerny RL, Xiao H, Eischen CM. 2005; Mdm2 binds to Nbs1 at sites of DNA damage and regulates double strand break repair. J Biol Chem. 280:18771–18781. DOI: 10.1074/jbc.M413387200. PMID: 15734743.
Article
73. Saison-Ridinger M, DelGiorno KE, Zhang T, Kraus A, French R, Jaquish D, et al. 2017; Reprogramming pancreatic stellate cells via p53 activation: a putative target for pancreatic cancer therapy. PLoS One. 12:e0189051. DOI: 10.1371/journal.pone.0189051. PMID: 29211796. PMCID: PMC5718507.
Article
74. Lou K, Steri V, Ge AY, Hwang YC, Yogodzinski CH, Shkedi AR, et al. 2019; KRASG12C inhibition produces a driver-limited state revealing collateral dependencies. Sci Signal. 12:eaaw9450. DOI: 10.1126/scisignal.aaw9450. PMID: 31138768. PMCID: PMC6871662.
Article
75. Lankes K, Hassan Z, Doffo MJ, Schneeweis C, Lier S, Öllinger R, et al. 2020; Targeting the ubiquitin-proteasome system in a pancreatic cancer subtype with hyperactive MYC. Mol Oncol. 14:3048–3064. DOI: 10.1002/1878-0261.12835. PMID: 33099868. PMCID: PMC7718946.
Article
76. Alberts SR, Foster NR, Morton RF, Kugler J, Schaefer P, Wiesenfeld M, et al. 2005; PS-341 and gemcitabine in patients with metastatic pancreatic adenocarcinoma: a North Central Cancer Treatment Group (NCCTG) randomized phase II study. Ann Oncol. 16:1654–1661. DOI: 10.1093/annonc/mdi324. PMID: 16085692.
Article
77. Xu J, Patel NH, Gewirtz DA. 2020; Triangular relationship between p53, autophagy, and chemotherapy resistance. Int J Mol Sci. 21:8991. DOI: 10.3390/ijms21238991. PMID: 33256191. PMCID: PMC7730978.
Article
78. Wolpin BM, Rubinson DA, Wang X, Chan JA, Cleary JM, Enzinger PC, et al. 2014; Phase II and pharmacodynamic study of autophagy inhibition using hydroxychloroquine in patients with metastatic pancreatic adenocarcinoma. Oncologist. 19:637–638. DOI: 10.1634/theoncologist.2014-0086. PMID: 24821822. PMCID: PMC4041680.
Article
79. Karasic TB, O'Hara MH, Loaiza-Bonilla A, Reiss KA, Teitelbaum UR, Borazanci E, et al. 2019; Effect of gemcitabine and nab-paclitaxel with or without hydroxychloroquine on patients with advanced pancreatic cancer: a phase 2 randomized clinical trial. JAMA Oncol. 5:993–998. DOI: 10.1001/jamaoncol.2019.0684. PMID: 31120501. PMCID: PMC6547080.
80. Chude CI, Amaravadi RK. 2017; Targeting autophagy in cancer: update on clinical trials and novel inhibitors. Int J Mol Sci. 18:1279. DOI: 10.3390/ijms18061279. PMID: 28621712. PMCID: PMC5486101.
Article
81. Balaburski GM, Hontz RD, Murphy ME. 2010; p53 and ARF: unexpected players in autophagy. Trends Cell Biol. 20:363–369. DOI: 10.1016/j.tcb.2010.02.007. PMID: 20303758. PMCID: PMC2891045.
Article
82. Matsushima S, Okita N, Oku M, Nagai W, Kobayashi M, Higami Y. 2011; An Mdm2 antagonist, Nutlin-3a, induces p53-dependent and proteasome-mediated poly(ADP-ribose) polymerase1 degradation in mouse fibroblasts. Biochem Biophys Res Commun. 407:557–561. DOI: 10.1016/j.bbrc.2011.03.061. PMID: 21419099.
Article
83. Kobayashi M, Ishizaki Y, Owaki M, Matsumoto Y, Kakiyama Y, Hoshino S, et al. 2020; Nutlin-3a suppresses poly (ADP-ribose) polymerase 1 by mechanisms different from conventional PARP1 suppressors in a human breast cancer cell line. Oncotarget. 11:1653–1665. DOI: 10.18632/oncotarget.27581. PMID: 32405340. PMCID: PMC7210013.
Article
84. Zanjirband M, Curtin N, Edmondson RJ, Lunec J. 2017; Combination treatment with rucaparib (Rubraca) and MDM2 inhibitors, Nutlin-3 and RG7388, has synergistic and dose reduction potential in ovarian cancer. Oncotarget. 8:69779–69796. DOI: 10.18632/oncotarget.19266. PMID: 29050241. PMCID: PMC5642516.
Article
85. Vena F, Jia R, Esfandiari A, Garcia-Gomez JJ, Rodriguez-Justo M, Ma J, et al. 2018; MEK inhibition leads to BRCA2 downregulation and sensitization to DNA damaging agents in pancreas and ovarian cancer models. Oncotarget. 9:11592–11603. DOI: 10.18632/oncotarget.24294. PMID: 29545922. PMCID: PMC5837749.
Article
86. Deer EL, González-Hernández J, Coursen JD, Shea JE, Ngatia J, Scaife CL, et al. 2010; Phenotype and genotype of pancreatic cancer cell lines. Pancreas. 39:425–435. DOI: 10.1097/MPA.0b013e3181c15963. PMID: 20418756. PMCID: PMC2860631.
Article
87. Bhutani MS, Cazacu IM, Roy-Chowdhuri S, Maitra A, Pishvaian MJ. 2020; Upfront molecular profiling of pancreatic cancer patients - an idea whose time has come. Pancreatology. 20:391–393. DOI: 10.1016/j.pan.2020.01.017. PMID: 32192904.
Article
Full Text Links
  • AHBPS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr