Anat Cell Biol.  2021 Jun;54(2):143-151. 10.5115/acb.21.089.

Role of agmatine in the application of neural progenitor cell in central nervous system diseases: therapeutic potentials and effects

Affiliations
  • 1Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
  • 2Brain Korea 21 Plus Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea

Abstract

Agmatine, the primary decarboxylation product of L-arginine, generated from arginine decarboxylase. Since the discovery of agmatine in the mammalian brain in the 1990s, an increasing number of agmatine-mediated effects have been discovered, demonstrating the benefits of agmatine on ischemic strokes, traumatic brain injury and numerous psychological disorders such as depression, anxiety, and stress. Agmatine also has cellular protective effects and contributes to cell proliferation and differentiation in the central nervous system (CNS). Neural progenitor cells are an important component in the recovery and repair of many neurological disorders due to their ability to differentiate into functional adult neurons. Recent data has revealed that agmatine can regulate and increase proliferation and the fate of progenitor cells in the adult hippocampus. This review aims to summarise and discuss the role of agmatine in the CNS; specifically, the effects and relationship between agmatine and neural progenitor cells and how these ideas can be applied to potential therapeutic application.

Keyword

Agmatine; Neural progenitor stem cells; Arginine; Neuroprotection; Therapeutic uses

Figure

  • Fig. 1 Schematic diagram of the roles of agmatine in the brain stem/spinal cord, hippocampus, temporal lobe, prefrontal and parietal lobe. ERK, Extracellular-signal-regulated kinases; NO, nitric oxide; NOS, nitric oxide synthase; ROS, reactive oxygen species; SOD, superoxide dismutase; TLX, tailless homolog. This figure was created and published with permission from BioRender.com.

  • Fig. 2 Schematic illustration of the synthesis of L-arginine dependent, agmatine in the mitochondria of astrocytes. Agmatine is synthesized as a result of arginine decarboxylase dependent L-arginine. Arginase converts L-arginine to ornithine, which enters the urea cycle and NOS initiates the conversion of L-arginine to NO and citrulline. Agmatine can be metabolized to putrescine—which can produce spermine and spermidine—through agmatinase or be oxidised by diamine oxidase to produce guanidinobutyric acid. NO, nitric oxide.


Reference

References

1. Reis DJ, Regunathan S. 1999; Agmatine: an endogenous ligand at imidazoline receptors is a novel neurotransmitter. Ann N Y Acad Sci. 881:65–80. DOI: 10.1111/j.1749-6632.1999.tb09343.x. PMID: 10415899.
2. Xu W, Gao L, Li T, Shao A, Zhang J. 2018; Neuroprotective role of agmatine in neurological diseases. Curr Neuropharmacol. 16:1296–305. DOI: 10.2174/1570159X15666170808120633. PMID: 28786346. PMCID: PMC6251039.
Article
3. Behnisch T, Reymann KG. 1993; Co-activation of metabotropic glutamate and N-methyl-D-aspartate receptors is involved in mechanisms of long-term potentiation maintenance in rat hippocampal CA1 neurons. Neuroscience. 54:37–47. DOI: 10.1016/0306-4522(93)90381-O. PMID: 8515845.
Article
4. Piletz JE, Aricioglu F, Cheng JT, Fairbanks CA, Gilad VH, Haenisch B, Halaris A, Hong S, Lee JE, Li J, Liu P, Molderings GJ, Rodrigues AL, Satriano J, Seong GJ, Wilcox G, Wu N, Gilad GM. 2013; Agmatine: clinical applications after 100 years in translation. Drug Discov Today. 18:880–93. DOI: 10.1016/j.drudis.2013.05.017. PMID: 23769988.
Article
5. Raasch W, Regunathan S, Li G, Reis DJ. 1995; Agmatine, the bacterial amine, is widely distributed in mammalian tissues. Life Sci. 56:2319–30. DOI: 10.1016/0024-3205(95)00226-V. PMID: 7791519.
Article
6. Molderings GJ, Burian M, Homann J, Nilius M, Göthert M. 1999; Potential relevance of agmatine as a virulence factor of Helicobacter pylori. Dig Dis Sci. 44:2397–404. DOI: 10.1023/A:1026662316750. PMID: 10630488.
7. Osborne DL, Seidel ER. 1990; Gastrointestinal luminal polyamines: cellular accumulation and enterohepatic circulation. Am J Physiol. 258(4 Pt 1):G576–84. DOI: 10.1152/ajpgi.1990.258.4.G576. PMID: 2333971.
Article
8. Benamouzig R, Mahé S, Luengo C, Rautureau J, Tomé D. 1997; Fasting and postprandial polyamine concentrations in the human digestive lumen. Am J Clin Nutr. 65:766–70. DOI: 10.1093/ajcn/65.3.766. PMID: 9062527.
Article
9. Li YF, Chen HX, Liu Y, Zhang YZ, Liu YQ, Li J. 2006; Agmatine increases proliferation of cultured hippocampal progenitor cells and hippocampal neurogenesis in chronically stressed mice. Acta Pharmacol Sin. 27:1395–400. DOI: 10.1111/j.1745-7254.2006.00429.x. PMID: 17049113.
Article
10. Raghavan SA, Dikshit M. 2004; Vascular regulation by the L-arginine metabolites, nitric oxide and agmatine. Pharmacol Res. 49:397–414. DOI: 10.1016/j.phrs.2003.10.008. PMID: 14998549.
11. Popolo A, Adesso S, Pinto A, Autore G, Marzocco S. 2014; L-Arginine and its metabolites in kidney and cardiovascular disease. Amino Acids. 46:2271–86. DOI: 10.1007/s00726-014-1825-9. PMID: 25161088.
Article
12. Uzbay TI. 2012; The pharmacological importance of agmatine in the brain. Neurosci Biobehav Rev. 36:502–19. DOI: 10.1016/j.neubiorev.2011.08.006. PMID: 21893093.
Article
13. Wang CC, Chio CC, Chang CH, Kuo JR, Chang CP. 2010; Beneficial effect of agmatine on brain apoptosis, astrogliosis, and edema after rat transient cerebral ischemia. BMC Pharmacol. 10:11. DOI: 10.1186/1471-2210-10-11. PMID: 20815926. PMCID: PMC2941483.
Article
14. Vlassara H, Bucala R, Striker L. 1994; Pathogenic effects of advanced glycosylation: biochemical, biologic, and clinical implications for diabetes and aging. Lab Invest. 70:138–51. PMID: 8139257.
15. Li G, Regunathan S, Barrow CJ, Eshraghi J, Cooper R, Reis DJ. 1994; Agmatine: an endogenous clonidine-displacing substance in the brain. Science. 263:966–9. DOI: 10.1126/science.7906055. PMID: 7906055.
Article
16. Berkels R, Taubert D, Gründemann D, Schömig E. 2004; Agmatine signaling: odds and threads. Cardiovasc Drug Rev. 22:7–16. DOI: 10.1111/j.1527-3466.2004.tb00128.x. PMID: 14978515.
Article
17. Moretti M, Matheus FC, de Oliveira PA, Neis VB, Ben J, Walz R, Rodrigues AL, Prediger RD. 2014; Role of agmatine in neurodegenerative diseases and epilepsy. Front Biosci (Elite Ed). 6:341–59. DOI: 10.2741/710. PMID: 24896210.
Article
18. Watts D, Pfaffenseller B, Wollenhaupt-Aguiar B, Paul Géa L, Cardoso TA, Kapczinski F. 2019; Agmatine as a potential therapeutic intervention in bipolar depression: the preclinical landscape. Expert Opin Ther Targets. 23:327–39. DOI: 10.1080/14728222.2019.1581764. PMID: 30764678.
Article
19. Feng Y, LeBlanc MH, Regunathan S. 2005; Agmatine reduces extracellular glutamate during pentylenetetrazole-induced seizures in rat brain: a potential mechanism for the anticonvulsive effects. Neurosci Lett. 390:129–33. DOI: 10.1016/j.neulet.2005.08.008. PMID: 16125317. PMCID: PMC2920494.
Article
20. Olmos G, DeGregorio-Rocasolano N, Paz Regalado M, Gasull T, Assumpció Boronat M, Trullas R, Villarroel A, Lerma J, García-Sevilla JA. 1999; Protection by imidazol(ine) drugs and agmatine of glutamate-induced neurotoxicity in cultured cerebellar granule cells through blockade of NMDA receptor. Br J Pharmacol. 127:1317–26. DOI: 10.1038/sj.bjp.0702679. PMID: 10455281. PMCID: PMC1760666.
Article
21. Kim JY, Lee YW, Kim JH, Lee WT, Park KA, Lee JE. 2015; Agmatine attenuates brain edema and apoptotic cell death after traumatic brain injury. J Korean Med Sci. 30:943–52. DOI: 10.3346/jkms.2015.30.7.943. PMID: 26130959. PMCID: PMC4479950.
Article
22. Abe K, Abe Y, Saito H. 2000; Agmatine suppresses nitric oxide production in microglia. Brain Res. 872:141–8. DOI: 10.1016/S0006-8993(00)02517-8. PMID: 10924686.
Article
23. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R. 2003; Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science. 301:805–9. DOI: 10.1126/science.1083328. PMID: 12907793.
Article
24. Song J, Hur BE, Bokara KK, Yang W, Cho HJ, Park KA, Lee WT, Lee KM, Lee JE. 2014; Agmatine improves cognitive dysfunction and prevents cell death in a streptozotocin-induced Alzheimer rat model. Yonsei Med J. 55:689–99. DOI: 10.3349/ymj.2014.55.3.689. PMID: 24719136. PMCID: PMC3990080.
Article
25. Kuo JR, Lo CJ, Chio CC, Chang CP, Lin MT. 2007; Resuscitation from experimental traumatic brain injury by agmatine therapy. Resuscitation. 75:506–14. DOI: 10.1016/j.resuscitation.2007.05.011. PMID: 17629391.
Article
26. Kim JH, Yenari MA, Giffard RG, Cho SW, Park KA, Lee JE. 2004; Agmatine reduces infarct area in a mouse model of transient focal cerebral ischemia and protects cultured neurons from ischemia-like injury. Exp Neurol. 189:122–30. DOI: 10.1016/j.expneurol.2004.05.029. PMID: 15296842.
Article
27. Freitas AE, Neis VB, Rodrigues ALS. 2016; Agmatine, a potential novel therapeutic strategy for depression. Eur Neuropsychopharmacol. 26:1885–99. DOI: 10.1016/j.euroneuro.2016.10.013. PMID: 27836390.
Article
28. Regunathan S, Feinstein DL, Raasch W, Reis DJ. 1995; Agmatine (decarboxylated arginine) is synthesized and stored in astrocytes. Neuroreport. 6:1897–900. DOI: 10.1097/00001756-199510020-00018. PMID: 8547593.
Article
29. Mancinelli L, Ragonese F, Cataldi S, Ceccarini MR, Iannitti RG, Arcuri C, Fioretti B. 2018; Inhibitory effects of agmatine on monoamine oxidase (MAO) activity: reconciling the discrepancies. EuroBiotech J. 2:121–7. DOI: 10.2478/ebtj-2018-0016.
Article
30. Regunathan S, Piletz JE. 2003; Regulation of inducible nitric oxide synthase and agmatine synthesis in macrophages and astrocytes. Ann N Y Acad Sci. 1009:20–9. DOI: 10.1196/annals.1304.002. PMID: 15028566.
Article
31. Liu Y, Lu GY, Chen WQ, Li YF, Wu N, Li J. 2018; Agmatine inhibits chronic morphine exposure-induced impairment of hippocampal neural progenitor proliferation in adult rats. Eur J Pharmacol. 818:50–6. DOI: 10.1016/j.ejphar.2017.10.018. PMID: 29031903.
Article
32. Kim JH, Kim JY, Jung JY, Lee YW, Lee WT, Huh SK, Lee JE. 2017; Endogenous agmatine induced by ischemic preconditioning regulates ischemic tolerance following cerebral ischemia. Exp Neurobiol. 26:380–9. DOI: 10.5607/en.2017.26.6.380. PMID: 29302205. PMCID: PMC5746503.
Article
33. Feng Y, Piletz JE, Leblanc MH. 2002; Agmatine suppresses nitric oxide production and attenuates hypoxic-ischemic brain injury in neonatal rats. Pediatr Res. 52:606–11. DOI: 10.1203/00006450-200210000-00023. PMID: 12357058.
Article
34. Moon SU, Kwon KH, Kim JH, Bokara KK, Park KA, Lee WT, Lee JE. 2010; Recombinant hexahistidine arginine decarboxylase (hisADC) induced endogenous agmatine synthesis during stress. Mol Cell Biochem. 345:53–60. DOI: 10.1007/s11010-010-0559-6. PMID: 20730478.
Article
35. Mun CH, Lee WT, Park KA, Lee JE. 2010; Regulation of endothelial nitric oxide synthase by agmatine after transient global cerebral ischemia in rat brain. Anat Cell Biol. 43:230–40. DOI: 10.5115/acb.2010.43.3.230. PMID: 21212863. PMCID: PMC3015041.
Article
36. Jung HJ, Yang MZ, Kwon KH, Yenari MA, Choi YJ, Lee WT, Park KA, Lee JE. 2010; Endogenous agmatine inhibits cerebral vascular matrix metalloproteinases expression by regulating activating transcription factor 3 and endothelial nitric oxide synthesis. Curr Neurovasc Res. 7:201–12. DOI: 10.2174/156720210792231804. PMID: 20560878.
37. Kim JY, Kim JY, Kim JH, Jung H, Lee WT, Lee JE. 2019; Restorative mechanism of neural progenitor cells overexpressing arginine decarboxylase genes following ischemic injury. Exp Neurobiol. 28:85–103. DOI: 10.5607/en.2019.28.1.85. PMID: 30853827. PMCID: PMC6401554.
Article
38. Bokara KK, Kwon KH, Nho Y, Lee WT, Park KA, Lee JE. 2011; Retroviral expression of arginine decarboxylase attenuates oxidative burden in mouse cortical neural stem cells. Stem Cells Dev. 20:527–37. DOI: 10.1089/scd.2010.0312. PMID: 20735257.
Article
39. Cameron HA, Woolley CS, McEwen BS, Gould E. 1993; Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience. 56:337–44. DOI: 10.1016/0306-4522(93)90335-D. PMID: 8247264.
Article
40. Ming GL, Song H. 2011; Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron. 70:687–702. DOI: 10.1016/j.neuron.2011.05.001. PMID: 21609825. PMCID: PMC3106107.
Article
41. Martínez-Cerdeño V, Noctor SC. 2018; Neural progenitor cell terminology. Front Neuroanat. 12:104. DOI: 10.3389/fnana.2018.00104. PMID: 30574073. PMCID: PMC6291443.
Article
42. Christie BR, Cameron HA. 2006; Neurogenesis in the adult hippocampus. Hippocampus. 16:199–207. DOI: 10.1002/hipo.20151. PMID: 16411231.
Article
43. Gage FH. 2000; Mammalian neural stem cells. Science. 287:1433–8. DOI: 10.1126/science.287.5457.1433. PMID: 10688783. PMCID: PMC8150395.
Article
44. Goudarzi G, Hamidabadi HG, Bojnordi MN, Hedayatpour A, Niapour A, Zahiri M, Absalan F, Darabi S. 2020; Role of cerebrospinal fluid in differentiation of human dental pulp stem cells into neuron-like cells. Anat Cell Biol. 53:292–300. DOI: 10.5115/acb.19.241. PMID: 32993279. PMCID: PMC7527124.
Article
45. Haratizadeh S, Nazm Bojnordi M, Darabi S, Karimi N, Naghikhani M, Ghasemi Hamidabadi H, Seifi M. 2017; Condition medium of cerebrospinal fluid and retinoic acid induces the transdifferentiation of human dental pulp stem cells into neuroglia and neural like cells. Anat Cell Biol. 50:107–14. DOI: 10.5115/acb.2017.50.2.107. PMID: 28713614. PMCID: PMC5509894.
Article
46. Chu MS, Chang CF, Yang CC, Bau YC, Ho LL, Hung SC. 2006; Signalling pathway in the induction of neurite outgrowth in human mesenchymal stem cells. Cell Signal. 18:519–30. DOI: 10.1016/j.cellsig.2005.05.018. PMID: 16098715.
Article
47. Goh EL, Ma D, Ming GL, Song H. 2003; Adult neural stem cells and repair of the adult central nervous system. J Hematother Stem Cell Res. 12:671–9. DOI: 10.1089/15258160360732696. PMID: 14977476.
Article
48. Kitamura T, Inokuchi K. 2014; Role of adult neurogenesis in hippocampal-cortical memory consolidation. Mol Brain. 7:13. DOI: 10.1186/1756-6606-7-13. PMID: 24552281. PMCID: PMC3942778.
Article
49. Cho JM, Shin YJ, Park JM, Kim J, Lee MY. 2013; Characterization of nestin expression in astrocytes in the rat hippocampal CA1 region following transient forebrain ischemia. Anat Cell Biol. 46:131–40. DOI: 10.5115/acb.2013.46.2.131. PMID: 23869260. PMCID: PMC3713277.
Article
50. Anacker C, Hen R. 2017; Adult hippocampal neurogenesis and cognitive flexibility - linking memory and mood. Nat Rev Neurosci. 18:335–46. DOI: 10.1038/nrn.2017.45. PMID: 28469276. PMCID: PMC6261347.
Article
51. Doetsch F. 2003; A niche for adult neural stem cells. Curr Opin Genet Dev. 13:543–50. DOI: 10.1016/j.gde.2003.08.012. PMID: 14550422.
Article
52. Walz R, Castro RM, Velasco TR, Carlotti CG Jr, Sakamoto AC, Brentani RR, Martins VR. 2002; Cellular prion protein: implications in seizures and epilepsy. Cell Mol Neurobiol. 22:249–57. DOI: 10.1023/A:1020711700048. PMID: 12469868.
53. Gould E, Tanapat P. 1999; Stress and hippocampal neurogenesis. Biol Psychiatry. 46:1472–9. DOI: 10.1016/S0006-3223(99)00247-4. PMID: 10599477.
Article
54. Deng W, Aimone JB, Gage FH. 2010; New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci. 11:339–50. DOI: 10.1038/nrn2822. PMID: 20354534. PMCID: PMC2886712.
Article
55. Drew MR, Hen R. 2007; Adult hippocampal neurogenesis as target for the treatment of depression. CNS Neurol Disord Drug Targets. 6:205–18. DOI: 10.2174/187152707780619353. PMID: 17511617.
Article
56. Nacher J, Alonso-Llosa G, Rosell DR, McEwen BS. 2003; NMDA receptor antagonist treatment increases the production of new neurons in the aged rat hippocampus. Neurobiol Aging. 24:273–84. DOI: 10.1016/S0197-4580(02)00096-9. PMID: 12498961.
Article
57. Reis DJ, Regunathan S. 2000; Is agmatine a novel neurotransmitter in brain? Trends Pharmacol Sci. 21:187–93. DOI: 10.1016/S0165-6147(00)01460-7. PMID: 10785653.
Article
58. Seo S, Liu P, Leitch B. 2011; Spatial learning-induced accumulation of agmatine and glutamate at hippocampal CA1 synaptic terminals. Neuroscience. 192:28–36. DOI: 10.1016/j.neuroscience.2011.07.007. PMID: 21777660.
Article
59. Rushaidhi M, Jing Y, Zhang H, Liu P. 2013; Participation of hippocampal agmatine in spatial learning: an in vivo microdialysis study. Neuropharmacology. 65:200–5. DOI: 10.1016/j.neuropharm.2012.10.007. PMID: 23116777.
60. Song HW, Kumar BK, Kim SH, Jeon YH, Lee YA, Lee WT, Park KA, Lee JE. 2011; Agmatine enhances neurogenesis by increasing ERK1/2 expression, and suppresses astrogenesis by decreasing BMP 2,4 and SMAD 1,5,8 expression in subventricular zone neural stem cells. Life Sci. 89:439–49. DOI: 10.1016/j.lfs.2011.07.003. PMID: 21843531.
Article
61. Berridge MJ, Lipp P, Bootman MD. 2000; The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 1:11–21. DOI: 10.1038/35036035. PMID: 11413485.
Article
62. Humeau J, Bravo-San Pedro JM, Vitale I, Nuñez L, Villalobos C, Kroemer G, Senovilla L. 2018; Calcium signaling and cell cycle: progression or death. Cell Calcium. 70:3–15. DOI: 10.1016/j.ceca.2017.07.006. PMID: 28801101.
Article
63. Green HF, Treacy E, Keohane AK, Sullivan AM, O'Keeffe GW, Nolan YM. 2012; A role for interleukin-1β in determining the lineage fate of embryonic rat hippocampal neural precursor cells. Mol Cell Neurosci. 49:311–21. DOI: 10.1016/j.mcn.2012.01.001. PMID: 22270046.
Article
64. Song J, Kumar BK, Kang S, Park KA, Lee WT, Lee JE. 2013; The effect of agmatine on expression of IL-1β and TLX which promotes neuronal differentiation in lipopolysaccharide-treated neural progenitors. Exp Neurobiol. 22:268–76. DOI: 10.5607/en.2013.22.4.268. PMID: 24465142. PMCID: PMC3897688.
Article
65. Zunszain PA, Anacker C, Cattaneo A, Choudhury S, Musaelyan K, Myint AM, Thuret S, Price J, Pariante CM. 2012; Interleukin-1β: a new regulator of the kynurenine pathway affecting human hippocampal neurogenesis. Neuropsychopharmacology. 37:939–49. DOI: 10.1038/npp.2011.277. PMID: 22071871. PMCID: PMC3280640.
Article
66. Mullen RJ, Buck CR, Smith AM. 1992; NeuN, a neuronal specific nuclear protein in vertebrates. Development. 116:201–11. DOI: 10.1242/dev.116.1.201. PMID: 1483388.
Article
67. Cimadamore F, Amador-Arjona A, Chen C, Huang CT, Terskikh AV. 2013; SOX2-LIN28/let-7 pathway regulates proliferation and neurogenesis in neural precursors. Proc Natl Acad Sci U S A. 110:E3017–26. DOI: 10.1073/pnas.1220176110. PMID: 23884650. PMCID: PMC3740872.
Article
68. Sung SM, Jung DS, Kwon CH, Park JY, Kang SK, Kim YK. 2007; Hypoxia/reoxygenation stimulates proliferation through PKC-dependent activation of ERK and Akt in mouse neural progenitor cells. Neurochem Res. 32:1932–9. DOI: 10.1007/s11064-007-9390-1. PMID: 17562163.
Article
69. Song J, Oh Y, Kim JY, Cho KJ, Lee JE. 2016; Suppression of microRNA let-7a expression by agmatine regulates neural stem cell differentiation. Yonsei Med J. 57:1461–7. DOI: 10.3349/ymj.2016.57.6.1461. PMID: 27593875. PMCID: PMC5011279.
70. Fu X, Brown KJ, Yap CC, Winckler B, Jaiswal JK, Liu JS. 2013; Doublecortin (Dcx) family proteins regulate filamentous actin structure in developing neurons. J Neurosci. 33:709–21. DOI: 10.1523/JNEUROSCI.4603-12.2013. PMID: 23303949. PMCID: PMC3711551.
Article
71. Morrissey J, McCracken R, Ishidoya S, Klahr S. 1995; Partial cloning and characterization of an arginine decarboxylase in the kidney. Kidney Int. 47:1458–61. DOI: 10.1038/ki.1995.204. PMID: 7543626.
Article
72. Tocharus C, Puriboriboon Y, Junmanee T, Tocharus J, Ekthuwapranee K, Govitrapong P. 2014; Melatonin enhances adult rat hippocampal progenitor cell proliferation via ERK signaling pathway through melatonin receptor. Neuroscience. 275:314–21. DOI: 10.1016/j.neuroscience.2014.06.026. PMID: 24956284.
Article
73. Niu W, Zou Y, Shen C, Zhang CL. 2011; Activation of postnatal neural stem cells requires nuclear receptor TLX. J Neurosci. 31:13816–28. DOI: 10.1523/JNEUROSCI.1038-11.2011. PMID: 21957244. PMCID: PMC3192402.
Article
74. Kim JH, Kim JY, Mun CH, Suh M, Lee JE. 2017; Agmatine modulates the phenotype of macrophage acute phase after spinal cord injury in rats. Exp Neurobiol. 26:278–86. DOI: 10.5607/en.2017.26.5.278. PMID: 29093636. PMCID: PMC5661060.
Article
75. Gilad GM, Gilad VH, Finberg JP, Rabey JM. 2005; Neurochemical evidence for agmatine modulation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity. Neurochem Res. 30:713–9. DOI: 10.1007/s11064-005-6865-9. PMID: 16187208.
Article
76. Kang S, Kim CH, Jung H, Kim E, Song HT, Lee JE. 2017; Agmatine ameliorates type 2 diabetes induced-Alzheimer's disease-like alterations in high-fat diet-fed mice via reactivation of blunted insulin signalling. Neuropharmacology. 113(Pt A):467–79. DOI: 10.1016/j.neuropharm.2016.10.029. PMID: 27810390.
Article
Full Text Links
  • ACB
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr