Korean J Physiol Pharmacol.  2021 Jul;25(4):365-374. 10.4196/kjpp.2021.25.4.365.

Rapamycin reduces orofacial nociceptive responses and microglial p38 mitogen-activated protein kinase phosphorylation in trigeminal nucleus caudalis in mouse orofacial formalin model

Affiliations
  • 1Department of Oral Physiology, School of Dentistry, Kyung Hee University, Seoul 02447, Korea

Abstract

The mammalian target of rapamycin (mTOR) plays a role in various cellular phenomena, including autophagy, cell proliferation, and differentiation. Although recent studies have reported its involvement in nociceptive responses in several pain models, whether mTOR is involved in orofacial pain processing is currently unexplored. This study determined whether rapamycin, an mTOR inhibitor, reduces nociceptive responses and the number of Fos-immunoreactive (Fos-ir) cells in the trigeminal nucleus caudalis (TNC) in a mouse orofacial formalin model. We also examined whether the glial cell expression and phosphorylated p38 (p-p38) mitogen-activated protein kinases (MAPKs) in the TNC are affected by rapamycin. Mice were intraperitoneally given rapamycin (0.1, 0.3, or 1.0 mg/kg); then, 30 min after, 5% formalin (10 l) was subcutaneously injected into the right upper lip. The rubbing responses with the ipsilateral forepaw or hindpaw were counted for 45 min. High-dose rapamycin (1.0 mg/kg) produced significant antinociceptive effects in both the first and second phases of formalin test. The number of Fos-ir cells in the ipsilateral TNC was also reduced by high-dose rapamycin compared with vehicle-treated animals. Furthermore, the number of p-p38-ir cells the in ipsilateral TNC was significantly decreased in animals treated with high-dose rapamycin; p-p38 expression was co-localized in microglia, but not neurons and astrocytes. Therefore, the mTOR inhibitor, rapamycin, reduces orofacial nociception and Fos expression in the TNC, and its antinociceptive action on orofacial pain may be associated with the inhibition of p-p38 MAPK in the microglia.

Keyword

Glia; mTOR; Orofacial pain; p38 mitogen-activated protein kinases; Rapamycin

Figure

  • Fig. 1 Effect of rapamycin in the orofacial formalin test in mice. Low- and medium-dose rapamycin (0.1 and 0.3 mg/kg, respectively) did not suppress orofacial formalin-induced nociceptive responses. On the other hand, high-dose rapamycin (1.0 mg/kg) significantly reduced nociceptive response at 3, 18–30, and 42 min after formalin injection (A). High-dose rapamycin (1.0 mg/kg) showed potent antinociceptive effects in the first and second phases (B)compared with the vehicle-treated (VEH) group (*p < 0.005, **p < 0.01, and ***p < 0.001, compared with the VEH group, n = 10–12 per group). i.p., intraperitoneally.

  • Fig. 2 Effect of rapamycin on the increase of Fos-immunoreactive (Fos-ir) cells in the trigeminal nucleus caudalis (TNC). The number of Fos-ir cells increased in the TNC of the vehicle-treated (VEH) group (A, E); low- and medium-dose rapamycin (0.1 and 0.3 mg/kg) did not suppress this increase of Fos-ir cells (B, C, E). On the other hand, high-dose rapamycin (1.0 mg/kg) significantly reduced the increase of Fos-ir cells in the ipsilateral TNC (D, E, ***p < 0.001, compared with the VEH group, n = 5). The boundaries of the TNC are outlined by the dotted line. Scale bar = 200 µm.

  • Fig. 3 Effect of rapamycin on glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule-1 (Iba-1) expression in the trigeminal nucleus caudalis (TNC). The pixel threshold area of either GFAP (A–E) or Iba-1 (F–J) in the TNC remained unchanged in the vehicle-treated (VEH) group (A, F) and after all doses of rapamycin treatment (0.1, 0.3, and 1.0 mg/kg) (B–D, G–I). The boundaries of the TNC are outlined by the dotted line. Scale bar = 200 µm.

  • Fig. 4 Effect of rapamycin on phosphorylated p38 (p-p38) mitogen-activated protein kinase (MAPK) in the trigeminal nucleus caudalis (TNC). The expression of p-p38 in the TNC remained unchanged after treatment with low- and medium-dose rapamycin (0.1 and 0.3 mg/kg, respectively) (A–C, E; n = 5). On the other hand, the number of p-p38-ir cells significantly decreased after treatment with high-dose rapamycin (1.0 mg/kg) compared with the vehicle-treated (VEH) group (D, E; **p < 0.01, compared with the VEH group, n = 5). The boundaries of the TNC are outlined by the dotted line. The arrows indicate representative p-p38-ir cells. Scale bar = 200 and 100 µm (magnified panel).

  • Fig. 5 Co-localization of astrocyte (glial fibrillary acidic protein, GFAP), neuron (neuronal nuclear protein, NeuN), or microglia (ionized calcium-binding adapter molecule-1, Iba-1) with phosphorylated p38 (p-p38) MAPK in the trigeminal nucleus caudalis (TNC). Neither GFAP (A–C) nor NeuN (G–I) co-localized with p-p38 in the TNC. In contrast, Iba-1 immunoreactivity was co-expressed in p-p38-positive cells in the TNC in orofacial formalin-injected mice (D–F). The rectangular areas are magnified in panels (C, F, I), whereas arrows indicate representative p-p38-ir cells double-stained with Iba-1. Scale bar = 200 and 100 µm (magnified panel).


Cited by  1 articles

Antimicrobial therapies for chronic pain (part 2): the prevention and treatment of chronic pain
Eric J. Wang, Edward Dolomisiewicz, Jay Karri, Nuj Tontisirin, Steven P. Cohen
Korean J Pain. 2023;36(3):299-315.    doi: 10.1101/2022.11.03.22281783v1.abstract.


Reference

1. Raboisson P, Dallel R. 2004; The orofacial formalin test. Neurosci Biobehav Rev. 28:219–226. DOI: 10.1016/j.neubiorev.2003.12.003. PMID: 15172765.
Article
2. Miranda HF, Sierralta F, Prieto JC. 2009; Synergism between NSAIDs in the orofacial formalin test in mice. Pharmacol Biochem Behav. 92:314–318. DOI: 10.1016/j.pbb.2008.12.018. PMID: 19167421.
Article
3. Muñoz J, Navarro C, Noriega V, Pinardi G, Sierralta F, Prieto JC, Miranda HF. 2010; Synergism between COX-3 inhibitors in two animal models of pain. Inflammopharmacology. 18:65–71. DOI: 10.1007/s10787-009-0019-7. PMID: 20127283.
Article
4. Murakami M, Ichisaka T, Maeda M, Oshiro N, Hara K, Edenhofer F, Kiyama H, Yonezawa K, Yamanaka S. 2004; mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol Cell Biol. 24:6710–6718. DOI: 10.1128/MCB.24.15.6710-6718.2004. PMID: 15254238. PMCID: PMC444840.
Article
5. Zoncu R, Efeyan A, Sabatini DM. 2011; mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 12:21–35. DOI: 10.1038/nrm3025. PMID: 21157483. PMCID: PMC3390257.
Article
6. Altmann C, Hardt S, Fischer C, Heidler J, Lim HY, Häussler A, Albuquerque B, Zimmer B, Möser C, Behrends C, Koentgen F, Wittig I, Schmidt MHH, Clement AM, Deller T, Tegeder I. 2016; Progranulin overexpression in sensory neurons attenuates neuropathic pain in mice: role of autophagy. Neurobiol Dis. 96:294–311. DOI: 10.1016/j.nbd.2016.09.010. PMID: 27629805.
Article
7. Guertin DA, Sabatini DM. 2005; An expanding role for mTOR in cancer. Trends Mol Med. 11:353–361. DOI: 10.1016/j.molmed.2005.06.007. PMID: 16002336.
Article
8. Feng T, Yin Q, Weng ZL, Zhang JC, Wang KF, Yuan SY, Cheng W. 2014; Rapamycin ameliorates neuropathic pain by activating autophagy and inhibiting interleukin-1β in the rat spinal cord. J Huazhong Univ Sci Technolog Med Sci. 34:830–837. DOI: 10.1007/s11596-014-1361-6. PMID: 25480578.
Article
9. Obara I, Medrano MC, Signoret-Genest J, Jiménez-Díaz L, Géranton SM, Hunt SP. 2015; Inhibition of the mammalian target of rapamycin complex 1 signaling pathway reduces itch behaviour in mice. Pain. 156:1519–1529. DOI: 10.1097/j.pain.0000000000000197. PMID: 25906350.
Article
10. Xu Q, Fitzsimmons B, Steinauer J, O'Neill A, Newton AC, Hua XY, Yaksh TL. 2011; Spinal phosphinositide 3-kinase-Akt-mammalian target of rapamycin signaling cascades in inflammation-induced hyperalgesia. J Neurosci. 31:2113–2124. DOI: 10.1523/JNEUROSCI.2139-10.2011. PMID: 21307248. PMCID: PMC3097059.
Article
11. Ji RR, Berta T, Nedergaard M. 2013; Glia and pain: is chronic pain a gliopathy? Pain. 154 Suppl 1:S10–S28. DOI: 10.1016/j.pain.2013.06.022. PMID: 23792284. PMCID: PMC3858488.
Article
12. Kreutzberg GW. 1996; Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 19:312–318. DOI: 10.1016/0166-2236(96)10049-7. PMID: 8843599.
Article
13. Shinoda M, Hayashi Y, Kubo A, Iwata K. 2020; Pathophysiological mechanisms of persistent orofacial pain. J Oral Sci. 62:131–135. DOI: 10.2334/josnusd.19-0373. PMID: 32132329.
Article
14. Ji RR, Woolf CJ. 2001; Neuronal plasticity and signal transduction in nociceptive neurons: implications for the initiation and maintenance of pathological pain. Neurobiol Dis. 8:1–10. DOI: 10.1006/nbdi.2000.0360. PMID: 11162235.
Article
15. Ji RR, Samad TA, Jin SX, Schmoll R, Woolf CJ. 2002; p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron. 36:57–68. DOI: 10.1016/S0896-6273(02)00908-X. PMID: 12367506.
Article
16. Sekiguchi A, Kanno H, Ozawa H, Yamaya S, Itoi E. 2012; Rapamycin promotes autophagy and reduces neural tissue damage and locomotor impairment after spinal cord injury in mice. J Neurotrauma. 29:946–956. DOI: 10.1089/neu.2011.1919. PMID: 21806471.
Article
17. Tateda S, Kanno H, Ozawa H, Sekiguchi A, Yahata K, Yamaya S, Itoi E. 2017; Rapamycin suppresses microglial activation and reduces the development of neuropathic pain after spinal cord injury. J Orthop Res. 35:93–103. DOI: 10.1002/jor.23328. PMID: 27279283.
Article
18. Bornhof M, Ihmsen H, Schwilden H, Yeomans DC, Tzabazis A. 2011; The orofacial formalin test in mice revisited--effects of formalin concentration, age, morphine and analysis method. J Pain. 12:633–639. DOI: 10.1016/j.jpain.2010.11.009. PMID: 21481645.
Article
19. Roh DH, Yoon SY. 2014; Sigma-1 receptor antagonist, BD1047 reduces nociceptive responses and phosphorylation of p38 MAPK in mice orofacial formalin model. Biol Pharm Bull. 37:145–151. DOI: 10.1248/bpb.b13-00690. PMID: 24152609.
Article
20. Roh DH, Kim HW, Yoon SY, Kang SY, Kwon YB, Cho KH, Han HJ, Ryu YH, Choi SM, Lee HJ, Beitz AJ, Lee JH. 2006; Bee venom injection significantly reduces nociceptive behavior in the mouse formalin test via capsaicin-insensitive afferents. J Pain. 7:500–512. DOI: 10.1016/j.jpain.2006.02.002. PMID: 16814689.
Article
21. Müller R, Bravo R, Burckhardt J, Curran T. 1984; Induction of c-fos gene and protein by growth factors precedes activation of c-myc. . Nature. 312:716–720. DOI: 10.1038/312716a0. PMID: 6334806.
Article
22. Williams S, Evan GI, Hunt SP. 1990; Changing patterns of c-fos induction in spinal neurons following thermal cutaneous stimulation in the rat. Neuroscience. 36:73–81. DOI: 10.1016/0306-4522(90)90352-5. PMID: 2215924.
Article
23. Doyle T, Chen Z, Muscoli C, Obeid LM, Salvemini D. 2011; Intraplantar-injected ceramide in rats induces hyperalgesia through an NF-κB- and p38 kinase-dependent cyclooxygenase 2/prostaglandin E2 pathway. FASEB J. 25:2782–2791. DOI: 10.1096/fj.10-178095. PMID: 21551240. PMCID: PMC3136338.
24. Wang H, Tian J, Du F, Wang T. 2019; Effect of peritoneal transport characteristics on clinical outcome in nondiabetic and diabetic nephropathy patients with peritoneal dialysis. Iran J Kidney Dis. 13:56–66. PMID: 30851720.
25. Choi SR, Beitz AJ, Lee JH. 2019; Inhibition of cytochrome P450c17 reduces spinal astrocyte activation in a mouse model of neuropathic pain via regulation of p38 MAPK phosphorylation. Biomed Pharmacother. 118:109299. DOI: 10.1016/j.biopha.2019.109299. PMID: 31387001.
Article
26. Shillingford JM, Murcia NS, Larson CH, Low SH, Hedgepeth R, Brown N, Flask CA, Novick AC, Goldfarb DA, Kramer-Zucker A, Walz G, Piontek KB, Germino GG, Weimbs T. 2006; The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc Natl Acad Sci U S A. 103:5466–5471. DOI: 10.1073/pnas.0509694103. PMID: 16567633. PMCID: PMC1459378.
Article
27. Obara I, Hunt SP. 2014; Axonal protein synthesis and the regulation of primary afferent function. Dev Neurobiol. 74:269–278. DOI: 10.1002/dneu.22133. PMID: 24085547. PMCID: PMC4237183.
Article
28. Asante CO, Wallace VC, Dickenson AH. 2009; Formalin-induced behavioural hypersensitivity and neuronal hyperexcitability are mediated by rapid protein synthesis at the spinal level. Mol Pain. 5:27. DOI: 10.1186/1744-8069-5-27. PMID: 19500426. PMCID: PMC2699332.
Article
29. Géranton SM, Jiménez-Díaz L, Torsney C, Tochiki KK, Stuart SA, Leith JL, Lumb BM, Hunt SP. 2009; A rapamycin-sensitive signaling pathway is essential for the full expression of persistent pain states. J Neurosci. 29:15017–15027. DOI: 10.1523/JNEUROSCI.3451-09.2009. PMID: 19940197. PMCID: PMC2830115.
30. Ter Horst GJ, Meijler WJ, Korf J, Kemper RH. 2001; Trigeminal nociception-induced cerebral Fos expression in the conscious rat. Cephalalgia. 21:963–975. DOI: 10.1046/j.1468-2982.2001.00285.x. PMID: 11843868.
Article
31. Mitsikostas DD, Sanchez del Rio M. 2001; Receptor systems mediating c-fos expression within trigeminal nucleus caudalis in animal models of migraine. Brain Res Brain Res Rev. 35:20–35. DOI: 10.1016/S0165-0173(00)00048-5. PMID: 11245884.
32. Bhatt DK, Gupta S, Ploug KB, Jansen-Olesen I, Olesen J. 2014; mRNA distribution of CGRP and its receptor components in the trigeminovascular system and other pain related structures in rat brain, and effect of intracerebroventricular administration of CGRP on Fos expression in the TNC. Neurosci Lett. 559:99–104. DOI: 10.1016/j.neulet.2013.11.057. PMID: 24321404.
Article
33. Beggs S, Salter MW. 2007; Stereological and somatotopic analysis of the spinal microglial response to peripheral nerve injury. Brain Behav Immun. 21:624–633. DOI: 10.1016/j.bbi.2006.10.017. PMID: 17267172. PMCID: PMC5021535.
Article
34. Romero-Sandoval A, Chai N, Nutile-McMenemy N, Deleo JA. 2008; A comparison of spinal Iba1 and GFAP expression in rodent models of acute and chronic pain. Brain Res. 1219:116–126. DOI: 10.1016/j.brainres.2008.05.004. PMID: 18538310. PMCID: PMC2512259.
Article
35. Tsuda M, Inoue K, Salter MW. 2005; Neuropathic pain and spinal microglia: a big problem from molecules in "small" glia. Trends Neurosci. 28:101–107. DOI: 10.1016/j.tins.2004.12.002. PMID: 15667933.
Article
36. Chang YW, Tan A, Saab C, Waxman S. 2010; Unilateral focal burn injury is followed by long-lasting bilateral allodynia and neuronal hyperexcitability in spinal cord dorsal horn. J Pain. 11:119–130. DOI: 10.1016/j.jpain.2009.06.009. PMID: 19744891.
Article
37. Guo W, Wang H, Watanabe M, Shimizu K, Zou S, LaGraize SC, Wei F, Dubner R, Ren K. 2007; Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain. J Neurosci. 27:6006–6018. DOI: 10.1523/JNEUROSCI.0176-07.2007. PMID: 17537972. PMCID: PMC2676443.
Article
38. Piao ZG, Cho IH, Park CK, Hong JP, Choi SY, Lee SJ, Lee S, Park K, Kim JS, Oh SB. 2006; Activation of glia and microglial p38 MAPK in medullary dorsal horn contributes to tactile hypersensitivity following trigeminal sensory nerve injury. Pain. 121:219–231. DOI: 10.1016/j.pain.2005.12.023. PMID: 16495005.
Article
39. Okada-Ogawa A, Suzuki I, Sessle BJ, Chiang CY, Salter MW, Dostrovsky JO, Tsuboi Y, Kondo M, Kitagawa J, Kobayashi A, Noma N, Imamura Y, Iwata K. 2009; Astroglia in medullary dorsal horn (trigeminal spinal subnucleus caudalis) are involved in trigeminal neuropathic pain mechanisms. J Neurosci. 29:11161–11171. DOI: 10.1523/JNEUROSCI.3365-09.2009. PMID: 19741123. PMCID: PMC2804401.
Article
40. Clark AK, Gentry C, Bradbury EJ, McMahon SB, Malcangio M. 2007; Role of spinal microglia in rat models of peripheral nerve injury and inflammation. Eur J Pain. 11:223–230. DOI: 10.1016/j.ejpain.2006.02.003. PMID: 16545974.
Article
41. Fu KY, Light AR, Matsushima GK, Maixner W. 1999; Microglial reactions after subcutaneous formalin injection into the rat hind paw. Brain Res. 825:59–67. DOI: 10.1016/S0006-8993(99)01186-5. PMID: 10216173.
Article
42. Dello Russo C, Lisi L, Tringali G, Navarra P. 2009; Involvement of mTOR kinase in cytokine-dependent microglial activation and cell proliferation. Biochem Pharmacol. 78:1242–1251. DOI: 10.1016/j.bcp.2009.06.097. PMID: 19576187.
Article
43. Inyang KE, Szabo-Pardi T, Wentworth E, McDougal TA, Dussor G, Burton MD, Price TJ. 2019; The antidiabetic drug metformin prevents and reverses neuropathic pain and spinal cord microglial activation in male but not female mice. Pharmacol Res. 139:1–16. DOI: 10.1016/j.phrs.2018.10.027. PMID: 30391353. PMCID: PMC6447087.
Article
44. Tozaki-Saitoh H, Masuda J, Kawada R, Kojima C, Yoneda S, Masuda T, Inoue K, Tsuda M. 2019; Transcription factor MafB contributes to the activation of spinal microglia underlying neuropathic pain development. Glia. 67:729–740. DOI: 10.1002/glia.23570. PMID: 30485546.
Article
45. Lopes F, Vicentini FA, Cluny NL, Mathews AJ, Lee BH, Almishri WA, Griffin L, Gonçalves W, Pinho V, McKay DM, Hirota SA, Swain MG, Pittman QJ, Sharkey KA. 2020; Brain TNF drives post-inflammation depression-like behavior and persistent pain in experimental arthritis. Brain Behav Immun. 89:224–232. DOI: 10.1016/j.bbi.2020.06.023. PMID: 32592863.
Article
46. Ma W, Quirion R. 2002; Partial sciatic nerve ligation induces increase in the phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) in astrocytes in the lumbar spinal dorsal horn and the gracile nucleus. Pain. 99:175–184. DOI: 10.1016/S0304-3959(02)00097-0. PMID: 12237195.
Article
47. Jin SX, Zhuang ZY, Woolf CJ, Ji RR. 2003; p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J Neurosci. 23:4017–4022. DOI: 10.1523/JNEUROSCI.23-10-04017.2003. PMID: 12764087. PMCID: PMC6741086.
Article
48. Hains BC, Waxman SG. 2006; Activated microglia contribute to the maintenance of chronic pain after spinal cord injury. J Neurosci. 26:4308–4317. DOI: 10.1523/JNEUROSCI.0003-06.2006. PMID: 16624951. PMCID: PMC6674010.
Article
49. Wen YR, Suter MR, Ji RR, Yeh GC, Wu YS, Wang KC, Kohno T, Sun WZ, Wang CC. 2009; Activation of p38 mitogen-activated protein kinase in spinal microglia contributes to incision-induced mechanical allodynia. Anesthesiology. 110:155–165. DOI: 10.1097/ALN.0b013e318190bc16. PMID: 19104183.
Article
50. Gu YW, Su DS, Tian J, Wang XR. 2008; Attenuating phosphorylation of p38 MAPK in the activated microglia: a new mechanism for intrathecal lidocaine reversing tactile allodynia following chronic constriction injury in rats. Neurosci Lett. 431:129–134. DOI: 10.1016/j.neulet.2007.11.065. PMID: 18191894.
Article
51. Suter MR, Berta T, Gao YJ, Decosterd I, Ji RR. 2009; Large A-fiber activity is required for microglial proliferation and p38 MAPK activation in the spinal cord: different effects of resiniferatoxin and bupivacaine on spinal microglial changes after spared nerve injury. Mol Pain. 5:53. DOI: 10.1186/1744-8069-5-53. PMID: 19772627. PMCID: PMC2759920.
Article
52. Svensson CI, Marsala M, Westerlund A, Calcutt NA, Campana WM, Freshwater JD, Catalano R, Feng Y, Protter AA, Scott B, Yaksh TL. 2003; Activation of p38 mitogen-activated protein kinase in spinal microglia is a critical link in inflammation-induced spinal pain processing. J Neurochem. 86:1534–1544. DOI: 10.1046/j.1471-4159.2003.01969.x. PMID: 12950462.
Article
53. Cui XY, Dai Y, Wang SL, Yamanaka H, Kobayashi K, Obata K, Chen J, Noguchi K. 2008; Differential activation of p38 and extracellular signal-regulated kinase in spinal cord in a model of bee venom-induced inflammation and hyperalgesia. Mol Pain. 4:17. DOI: 10.1186/1744-8069-4-17. PMID: 18445299. PMCID: PMC2391153.
Article
54. Nasseri B, Zaringhalam J, Daniali S, Manaheji H, Abbasnejad Z, Nazemian V. 2019; Thymulin treatment attenuates inflammatory pain by modulating spinal cellular and molecular signaling pathways. Int Immunopharmacol. 70:225–234. DOI: 10.1016/j.intimp.2019.02.042. PMID: 30851702.
Article
55. Crown ED, Gwak YS, Ye Z, Johnson KM, Hulsebosch CE. 2008; Activation of p38 MAP kinase is involved in central neuropathic pain following spinal cord injury. Exp Neurol. 213:257–267. DOI: 10.1016/j.expneurol.2008.05.025. PMID: 18590729. PMCID: PMC2580737.
Article
56. Tan YH, Li K, Chen XY, Cao Y, Light AR, Fu KY. 2012; Activation of Src family kinases in spinal microglia contributes to formalin-induced persistent pain state through p38 pathway. J Pain. 13:1008–1015. DOI: 10.1016/j.jpain.2012.07.010. PMID: 23031400.
Article
57. Kumar S, Boehm J, Lee JC. 2003; p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov. 2:717–726. DOI: 10.1038/nrd1177. PMID: 12951578.
Article
58. Obata K, Yamanaka H, Kobayashi K, Dai Y, Mizushima T, Katsura H, Fukuoka T, Tokunaga A, Noguchi K. 2004; Role of mitogen-activated protein kinase activation in injured and intact primary afferent neurons for mechanical and heat hypersensitivity after spinal nerve ligation. J Neurosci. 24:10211–10222. DOI: 10.1523/JNEUROSCI.3388-04.2004. PMID: 15537893. PMCID: PMC6730193.
Article
59. Lim EJ, Jeon HJ, Yang GY, Lee MK, Ju JS, Han SR, Ahn DK. 2007; Intracisternal administration of mitogen-activated protein kinase inhibitors reduced mechanical allodynia following chronic constriction injury of infraorbital nerve in rats. Prog Neuropsychopharmacol Biol Psychiatry. 31:1322–1329. DOI: 10.1016/j.pnpbp.2007.05.016. PMID: 17618720.
Article
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr