Korean J Orthod.  2021 May;51(3):166-178. 10.4041/kjod.2021.51.3.166.

Effect of extraction treatment on upper airway dimensions in patients with bimaxillary skeletal protrusion relative to their vertical skeletal pattern

Affiliations
  • 1Department of Dentistry, Graduate School, Kyung Hee University, Seoul, Korea
  • 2Postgraduate Orthodontic Program, Arizona School of Dentistry & Oral Health, A.T. Still University, Mesa, AZ, USA
  • 3Department of Orthodontics, School of Dentistry, Kyung Hee University, Seoul, Korea

Abstract


Objective
To investigate dimensional changes in regional pharyngeal airway spaces after premolar extraction in bimaxillary skeletal protrusion (BSP) patients according to vertical skeletal pattern, and to further identify dentoskeletal risk factors to predict posttreatment pharyngeal changes.
Methods
Fiftyfive adults showing BSP treated with microimplant anchorage after four premolar extractions were included in this retrospective study. The subjects were divided into two groups according to the mandibular plane steepness: hyperdivergent (Frankfort horizontal plane to mandibular plane [FH-MP] ≥ 30) and nonhyperdivergent groups (FH-MP < 30). The control group consisted of 20 untreated adults with skeletal Class I normodivergent pattern and favorable profile. Treatment changes in cephalometric variables were evaluated and compared. The association between posttreatment changes in the dentoskeletal and upper airway variables were analyzed using linear regression analysis.
Results
The BSP patients showed no significant decrease in the pharyngeal dimensions to the lower level in comparison with controls, except for middle airway space (MAS, p < 0.01). The upper airway variable representing greater decrease in the hyperdivergent group than in the nonhyperdivergent group was the MAS (p < 0.01). Posttreatment changes in FH-MP had negative correlation with changes in MAS (β = –0.42, p < 0.01) and inferior airway space (β = –0.52, p < 0.01) as a result of multivariable regression analysis adjusted for sagittal skeletal relationship.
Conclusions
Decreased pharyngeal dimensions after treatment in BSP patients showed no significant difference from the normal range of pharyngeal dimensions. However, the glossopharyngeal airway space may be susceptible to treatment when vertical dimension increased in hyperdivergent BSP patients.

Keyword

Airway; Cephalometrics; Bimaxillary skeletal protrusion; Vertical skeletal pattern

Figure

  • Figure 1 Dentoskeletal (A) and pharyngeal (B) cephalometric landmarks and measurements. S, sella; Na, nasion; Po, porion; Or, orbitale; ANS, anterior nasal spine; PNS, posterior nasal spine; A, point A; B, point B; Pog, pogonion; Me, menton; Go, gonion; Sn, subnasale; UL, upper lip; LL, lower lip; Pog’; soft-tissue pogonion; Pt, pterygomaxillary point; Ad1, adenoid point 1; Ad2, adenoid point 2; Ba, basion; TT, tongue tip; H, hyoid bone; RGN, retrognathion; C3, third vertebra; P, tip of soft palate; R, midpoint of S-Ba line; Sb, belly of soft palate; Eb, base of epiglottis. See footnote of Table 1 for the definition of measurements.

  • Figure 2 Cephalometric pharyngeal measurements to describe each pharyngeal airway section: PNS-Ad2 and PNS-Ad1 for the nasopharynx; superior posterior airway space (SPAS) for the velopharynx behind the soft palate; middle airway space (MAS) and inferior airway space (IAS) for the glossopharynx behind the tongue base; and vertical airway length (VAL) for the pharyngeal airway length.11 See Figure 1 and footnote of Table 1 for the definition of other landmarks or measurements.


Reference

1. Kim TK, Ryu YK. 1994; Lip profile changes after orthodontic tooth movement in female adult with bimaxillary protrusion. Korean J Orthod. 24:135–48.
2. Chu YM, Po-Hsun Chen R, Morris DE, Wen-Ching Ko E, Chen YR. 2007; Surgical approach to the patient with bimaxillary protrusion. Clin Plast Surg. 34:535–46. DOI: 10.1016/j.cps.2007.05.006. PMID: 17692709.
Article
3. Bills DA, Handelman CS, BeGole EA. 2005; Bimaxillary dentoalveolar protrusion: traits and orthodontic correction. Angle Orthod. 75:333–9. DOI: 10.1043/0003-3219(2005)75[333:BDPTAO]2.0.CO;2. PMID: 15898369.
4. Leonardi R, Annunziata A, Licciardello V, Barbato E. 2010; Soft tissue changes following the extraction of premolars in nongrowing patients with bimaxillary protrusion. A systematic review. Angle Orthod. 80:211–6. DOI: 10.2319/010709-16.1. PMID: 19852663.
5. Uesugi S, Imamura T, Kokai S, Ono T. 2018; Cone-beam computed tomography-based diagnosis and treatment simulation for a patient with a protrusive profile and a gummy smile. Korean J Orthod. 48:189–99. DOI: 10.4041/kjod.2018.48.3.189. PMID: 29732305. PMCID: PMC5932321.
Article
6. Sharma K, Shrivastav S, Sharma N, Hotwani K, Murrell MD. 2014; Effects of first premolar extraction on airway dimensions in young adolescents: a retrospective cephalometric appraisal. Contemp Clin Dent. 5:190–4. DOI: 10.4103/0976-237X.132314. PMID: 24963245. PMCID: PMC4067782.
Article
7. Valiathan M, El H, Hans MG, Palomo MJ. 2010; Effects of extraction versus non-extraction treatment on oropharyngeal airway volume. Angle Orthod. 80:1068–74. DOI: 10.2319/010810-19.1. PMID: 20677956.
Article
8. Jones AG, Bhatia S. 1994; A study of nasal respiratory resistance and craniofacial dimensions in white and West Indian black children. Am J Orthod Dentofacial Orthop. 106:34–9. DOI: 10.1016/S0889-5406(94)70018-4. PMID: 8017347.
9. Chen Y, Hong L, Wang CL, Zhang SJ, Cao C, Wei F, et al. 2012; Effect of large incisor retraction on upper airway morphology in adult bimaxillary protrusion patients. Angle Orthod. 82:964–70. DOI: 10.2319/110211-675.1. PMID: 22462464.
Article
10. Wang Q, Jia P, Anderson NK, Wang L, Lin J. 2012; Changes of pharyngeal airway size and hyoid bone position following orthodontic treatment of Class I bimaxillary protrusion. Angle Orthod. 82:115–21. DOI: 10.2319/011011-13.1. PMID: 21793712.
Article
11. Al Maaitah E, El Said N, Abu Alhaija ES. 2012; First premolar extraction effects on upper airway dimension in bimaxillary proclination patients. Angle Orthod. 82:853–9. DOI: 10.2319/101711-646.1. PMID: 22369618.
Article
12. Zheng ZH, Yamaguchi T, Kurihara A, Li HF, Maki K. 2014; Three-dimensional evaluation of upper airway in patients with different anteroposterior skeletal patterns. Orthod Craniofac Res. 17:38–48. DOI: 10.1111/ocr.12029. PMID: 24033888.
Article
13. Baik UB, Suzuki M, Ikeda K, Sugawara J, Mitani H. 2002; Relationship between cephalometric characteristics and obstructive sites in obstructive sleep apnea syndrome. Angle Orthod. 72:124–34. DOI: 10.1043/0003-3219(2002)072<0124:RBCCAO>2.0.CO;2. PMID: 11999935.
14. Joseph AA, Elbaum J, Cisneros GJ, Eisig SB. 1998; A cephalometric comparative study of the soft tissue airway dimensions in persons with hyperdivergent and normodivergent facial patterns. J Oral Maxillofac Surg. 56:135–9. discussion 139–40. DOI: 10.1016/S0278-2391(98)90850-3. PMID: 9461134.
Article
15. Ucar FI, Uysal T. 2011; Orofacial airway dimensions in subjects with Class I malocclusion and different growth patterns. Angle Orthod. 81:460–8. DOI: 10.2319/091910-545.1. PMID: 21299381.
Article
16. Behrents RG, Shelgikar AV, Conley RS, Flores-Mir C, Hans M, Levine M, et al. 2019; Obstructive sleep apnea and orthodontics: an American Association of Orthodontists White Paper. Am J Orthod Dentofacial Orthop. 156:13–28.e1. DOI: 10.1016/j.ajodo.2019.04.009. PMID: 31256826.
Article
17. Marşan G, Cura N, Emekli U. 2008; Changes in pharyngeal (airway) morphology in Class III Turkish female patients after mandibular setback surgery. J Craniomaxillofac Surg. 36:341–5. DOI: 10.1016/j.jcms.2008.03.001. PMID: 18442917.
Article
18. Keum BT, Choi SH, Choi YJ, Baik HS, Lee KJ. 2017; Effects of bodily retraction of mandibular incisors versus mandibular setback surgery on pharyngeal airway space: a comparative study. Korean J Orthod. 47:344–52. DOI: 10.4041/kjod.2017.47.6.344. PMID: 29090122. PMCID: PMC5653683.
Article
19. Germec-Cakan D, Taner T, Akan S. 2011; Uvulo-glossopharyngeal dimensions in non-extraction, extraction with minimum anchorage, and extraction with maximum anchorage. Eur J Orthod. 33:515–20. DOI: 10.1093/ejo/cjq109. PMID: 21118911.
Article
20. Iwasaki T, Saitoh I, Takemoto Y, Inada E, Kakuno E, Kanomi R, et al. 2013; Tongue posture improvement and pharyngeal airway enlargement as secondary effects of rapid maxillary expansion: a cone-beam computed tomography study. Am J Orthod Dentofacial Orthop. 143:235–45. DOI: 10.1016/j.ajodo.2012.09.014. PMID: 23374931.
Article
21. Hu Z, Yin X, Liao J, Zhou C, Yang Z, Zou S. 2015; The effect of teeth extraction for orthodontic treatment on the upper airway: a systematic review. Sleep Breath. 19:441–51. DOI: 10.1007/s11325-015-1122-1. PMID: 25628011.
Article
22. Jena AK, Singh SP, Utreja AK. 2010; Sagittal mandibular development effects on the dimensions of the awake pharyngeal airway passage. Angle Orthod. 80:1061–7. DOI: 10.2319/030210-125.1. PMID: 20677955.
Article
23. Zheng Z, Liu H, Xu Q, Wu W, Du L, Chen H, et al. 2017; Computational fluid dynamics simulation of the upper airway response to large incisor retraction in adult class I bimaxillary protrusion patients. Sci Rep. 7:45706. DOI: 10.1038/srep45706. PMID: 28387372. PMCID: PMC5384277.
Article
24. Eggensperger N, Smolka W, Iizuka T. 2005; Long-term changes of hyoid bone position and pharyngeal airway size following mandibular setback by sagittal split ramus osteotomy. J Craniomaxillofac Surg. 33:111–7. DOI: 10.1016/j.jcms.2004.10.004. PMID: 15804590.
Article
25. Zinchuk AV, Gentry MJ, Concato J, Yaggi HK. 2017; Phenotypes in obstructive sleep apnea: a definition, examples and evolution of approaches. Sleep Med Rev. 35:113–23. DOI: 10.1016/j.smrv.2016.10.002. PMID: 27815038. PMCID: PMC5389934.
Article
Full Text Links
  • KJOD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr