Biomol Ther.  2021 May;29(3):311-320. 10.4062/biomolther.2020.197.

Suppression of Foxo3-Gatm by miR-132-3p Accelerates Cyst Formation by Up-Regulating ROS in Autosomal Dominant Polycystic Kidney Disease

Affiliations
  • 1Department of Biological Sciences and Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Republic of Korea

Abstract

Accumulation of reactive oxygen species (ROS) is associated with the development of various diseases. However, the molecular mechanisms underlying oxidative stress that lead to such diseases like autosomal dominant polycystic kidney disease (ADPKD) remain unclear. Here, we observed that oxidative stress markers were increased in Pkd1 f/f :HoxB7-Cre mice. Forkhead transcription factors of the O class (FOXOs) are known key regulators of the oxidative stress response, which have been observed with the expression of FoxO3a in an ADPKD mouse model in the present study. An integrated analysis of two datasets for differentially expressed miRNA, such as miRNA sequencing analysis of Pkd1 conditional knockout mice and microarray analysis of samples from ADPKD patients, showed that miR-132-3p was a key regulator of FOXO3a in ADPKD. miR-132-3p was significantly upregulated in ADPKD which directly targeted FOXO3 in both mouse and human cell lines. Interestingly, the mitochondrial gene Gatm was downregulated in ADPKD which led to a decreased inhibition of FOXO3. Overexpression of miR-132-3p coupled with knockdown of Foxo3 and Gatm increased ROS and accelerated cyst formation in 3D culture. This study reveals a novel mechanism involving miR-132-3p, Foxo3, and Gatm that is associated with the oxidative stress that occurs during cystogenesis in ADPKD.

Keyword

ADPKD; FOXO3; ROS; MicroRNA; Cystogenesis
Full Text Links
  • BT
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr