2. Waterloo S, Ahmed LA, Center JR, Eisman JA, Morseth B, Nguyen ND, Nguyen T, Sogaard AJ, Emaus N. 2012; Prevalence of vertebral fractures in women and men in the population-based Tromsø Study. BMC Musculoskelet Disord. 13:3. DOI:
10.1186/1471-2474-13-3. PMID:
22251875. PMCID:
PMC3273434.
Article
4. Ostrowski C, Ronan L, Sheridan R, Pearce V. 2013; An osteoporotic fracture mimicking cervical dystonia in idiopathic Parkinson's disease. Age Ageing. 42:658–9. DOI:
10.1093/ageing/aft050. PMID:
23672934.
Article
5. Schröder G, Wendig D, Jabke B, Schulze M, Wree A, Kundt G, Manhart J, Martin H, Sahmel O, Andresen R, Schober HC. 2019; [Comparison of the spongiosamorphology of the human cervical spine (CS), thoracic spine (TS) and lumbar spine (LS) of a 102-year-old body donor]. Osteologie. 28:283–8. German. DOI:
10.1055/a-0997-8059.
6. Benzel EC. Benzel EC, editor. 1995. Biomechanically relevant anatomy and material properties of the spine and associated elements. Biomechanics of Spine Stabilization: Principles and Clinical Practice. McGraw-Hill;New York:
7. Duval-Beaupère G, Robain G. 1987; Visualization on full spine radiographs of the anatomical connections of the centres of the segmental body mass supported by each vertebra and measured
in vivo. Int Orthop. 11:261–9. DOI:
10.1007/BF00271459. PMID:
3623765.
8. Kayser R, Beyer L. 2017. [Repetitorium manual medicine/chirotherapy]. Springer;Berlin:
9. Bühren V, Josten C. 2013. [Surgery of the injured spine: fractures, instabilities, deformities]. Springer;Berlin:
10. White AA, Panjabi MM. 1990. Clinical biomechanics of the spine. 2nd ed. Lippincott;Philadelphia:
11. Grote HJ, Amling M, Vogel M, Hahn M, Pösl M, Delling G. 1995; Intervertebral variation in trabecular microarchitecture throughout the normal spine in relation to age. Bone. 16:301–8. DOI:
10.1016/8756-3282(94)00042-5. PMID:
7786633.
Article
12. Yoganandan N, Pintar FA, Stemper BD, Baisden JL, Aktay R, Shender BS, Paskoff G, Laud P. 2006; Trabecular bone density of male human cervical and lumbar vertebrae. Bone. 39:336–44. DOI:
10.1016/j.bone.2006.01.160. PMID:
16580272.
Article
13. Gebauer M, Lohse C, Barvencik F, Pogoda P, Rueger JM, Püschel K, Amling M. 2006; Subdental synchondrosis and anatomy of the axis in aging: a histomorphometric study on 30 autopsy cases. Eur Spine J. 15:292–8. DOI:
10.1007/s00586-005-0990-7. PMID:
16167152. PMCID:
PMC3489288.
Article
14. Andresen R, Radmer S, Banzer D, Felsenberg D, Wolf KJ. 1994; [The quantitative determination of bone mineral content--a system comparison of similarly built computed tomographs]. Rofo. 160:260–5. German. DOI:
10.1055/s-2008-1032417. PMID:
8136480.
15. Genant HK, Wu CY, van Kuijk C, Nevitt MC. 1993; Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res. 8:1137–48. DOI:
10.1002/jbmr.5650080915. PMID:
8237484.
Article
16. Engelke K, Adams JE, Armbrecht G, Augat P, Bogado CE, Bouxsein ML, Felsenberg D, Ito M, Prevrhal S, Hans DB, Lewiecki EM. 2008; Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD official positions. J Clin Densitom. 11:123–62. DOI:
10.1016/j.jocd.2007.12.010. PMID:
18442757.
Article
17. Andresen R, Radmer S, Banzer D. 1998; Bone mineral density and spongiosa architecture in correlation to vertebral body insufficiency fractures. Acta Radiol. 39:538–42. DOI:
10.1080/02841859809172221. PMID:
9755704.
Article
19. Crilly RG, Cox L. 2013; A comparison of bone density and bone morphology between patients presenting with hip fractures, spinal fractures or a combination of the two. BMC Musculoskelet Disord. 14:68. DOI:
10.1186/1471-2474-14-68. PMID:
23432767. PMCID:
PMC3635881.
Article
20. Intolo P, Milosavljevic S, Baxter DG, Carman AB, Pal P, Munn J. 2009; The effect of age on lumbar range of motion: a systematic review. Man Ther. 14:596–604. DOI:
10.1016/j.math.2009.08.006. PMID:
19729332.
Article
21. Sullivan MS, Dickinson CE, Troup JD. 1994; The influence of age and gender on lumbar spine sagittal plane range of motion. A study of 1126 healthy subjects. Spine (Phila Pa 1976). 19:682–6. DOI:
10.1097/00007632-199403001-00007. PMID:
8009333.
22. Dvorák J, Vajda EG, Grob D, Panjabi MM. 1995; Normal motion of the lumbar spine as related to age and gender. Eur Spine J. 4:18–23. DOI:
10.1007/BF00298413. PMID:
7749901.
Article
25. Schober HC, Boldt R, Jabke B, Spiegel S, Schulze M, Hornung A, Kolbe V, Andresen R, Kullen C, Martin H, Sahmel O, Schröder G. 2019; Comparison of spongiosa morphology from human cervical spine, thoracic spine and lumbar spine of 10 human cadavar. Eur Spine J. 28:2711–2.
26. Acquaah F, Robson Brown KA, Ahmed F, Jeffery N, Abel RL. 2015; Early trabecular development in human vertebrae: overproduction, constructive regression, and refinement. Front Endocrinol (Lausanne). 6:67. DOI:
10.3389/fendo.2015.00067. PMID:
26106365. PMCID:
PMC4458883.
Article
27. Chen H, Shoumura S, Emura S, Bunai Y. 2008; Regional variations of vertebral trabecular bone microstructure with age and gender. Osteoporos Int. 19:1473–83. DOI:
10.1007/s00198-008-0593-3. PMID:
18330606.
Article
28. Chen H, Kubo KY. 2012; Segmental variations in trabecular bone density and microstructure of the spine in senescence-accelerated mouse (SAMP6): a murine model for senile osteoporosis. Exp Gerontol. 47:317–22. DOI:
10.1016/j.exger.2012.01.005. PMID:
22342532.
Article
29. Hayashi T, Chen H, Miyamoto K, Zhou X, Hara T, Yokoyama R, Kanematsu M, Hoshi H, Fujita H. 2011; Analysis of bone mineral density distribution at trabecular bones in thoracic and lumbar vertebrae using X-ray CT images. J Bone Miner Metab. 29:174–85. DOI:
10.1007/s00774-010-0204-1. PMID:
20635105.
Article
30. Chen H, Zhou X, Fujita H, Onozuka M, Kubo KY. 2013; Age-related changes in trabecular and cortical bone microstructure. Int J Endocrinol. 2013:213234. DOI:
10.1155/2013/213234. PMID:
23573086. PMCID:
PMC3614119.
Article
31. Follet H, Farlay D, Bala Y, Viguet-Carrin S, Gineyts E, Burt-Pichat B, Wegrzyn J, Delmas P, Boivin G, Chapurlat R. 2013; Determinants of microdamage in elderly human vertebral trabecular bone. PLoS One. 8:e55232. DOI:
10.1371/journal.pone.0055232. PMID:
23457465. PMCID:
PMC3574158.
Article
33. Banse X, Devogelaer JP, Munting E, Delloye C, Cornu O, Grynpas M. 2001; Inhomogeneity of human vertebral cancellous bone: systematic density and structure patterns inside the vertebral body. Bone. 28:563–71. DOI:
10.1016/S8756-3282(01)00425-2. PMID:
11344057.
Article
35. Uhl M, Theves C, Geiger J, Kersten A, Strohm PC. 2009; [The percutaneous bone biopsy:
in vitro study for comparison of bone biopsy needles]. Z Orthop Unfall. 147:327–33. German. DOI:
10.1055/s-2008-1039140. PMID:
19551584.
36. Park EA, Hong SH, Kim KG, Choi JY, Shin CS, Kang HS. 2009; Experimental bone biopsies using two bone biopsy needles: quantitative micro-CT analysis of bone specimens. Acad Radiol. 16:332–40. DOI:
10.1016/j.acra.2008.09.006. PMID:
19201362.
37. Gong H, Zhang M, Yeung HY, Qin L. 2005; Regional variations in microstructural properties of vertebral trabeculae with aging. J Bone Miner Metab. 23:174–80. DOI:
10.1007/s00774-004-0557-4. PMID:
15750697.
Article
38. Lee SH, Kim JN, Shin KJ, Koh KS, Song WC. 2020; Three-dimensional microstructures of the intracortical canals in the animal model of osteoporosis. Anat Cell Biol. 53:162–8. DOI:
10.5115/acb.19.189. PMID:
32647084. PMCID:
PMC7343558.
Article