Yonsei Med J.  2021 Apr;62(4):325-337. 10.3349/ymj.2021.62.4.325.

Inhibition of Long Noncoding RNA SNHG15 Ameliorates Hypoxia/Ischemia-Induced Neuronal Damage by Regulating miR-302a-3p/STAT1/NF-κB Axis

Affiliations
  • 1Department of Geriatrics Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
  • 2Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.

Abstract

Purpose
Ischemic brain injury results in high mortality and serious neurologic morbidity. Here, we explored the role of SNHG15 in modulating neuronal damage and microglial inflammation after ischemia stroke.
Materials and Methods
The hypoxia/ischemia models were induced by middle cerebral artery occlusion in mice and oxygenglucose deprivation/reoxygenation (OGD/R) in vitro. Quantitative real-time PCR (qRT-PCR) and Western blot were conducted to determine the levels of SNHG15, miR-302a-3p, and STAT1/NF-κB. Moreover, gain- or loss-of functional assays of SNHG15 and miR-302a-3p were conducted. MTT assay was used to evaluate the viability of HT22 cells, and the apoptotic level was determined by flow cytometry. Furthermore, enzyme-linked immunosorbent assay was performed to detect oxidative stress and inflammatory mediators in the ischemia cortex and OGD/R-treated BV2 microglia.
Results
The SNHG15 and STAT1/NF-κB pathways were both distinctly up-regulated, while miR-302a-3p was notably down-regulated in the ischemia cortex. Additionally, overexpressing SNHG15 dramatically enhanced OGD/R-mediated neuronal apoptosis as well as the expression of oxidative stress and inflammation factors from microglia. In contrast, knocking down SNHG15 or overexpressing miR-302a-3p relieved OGD/R-mediated neuronal apoptosis and microglial activation. Moreover, the rescue experiment testified that overexpressing miR-302a-3p also attenuated SNHG15 up-regulation-induced effects. In terms of the mechanisms, SNHG15 sponged miR-302a-3p and activated STAT1/NF-κB as a competitive endogenous RNA, while miR-302a-3p targeted STAT1 and negatively regulated the STAT1/NF-κB pathway.
Conclusion
SNHG15 was up-regulated in the hypoxia/ischemia mouse or cell model. The inhibition of SNHG15 ameliorates ischemia/hypoxia-induced neuronal damage and microglial inflammation by regulating the miR-302a-3p/STAT1/NF-κB pathway.

Keyword

Ischemic stroke; small nucleolar RNA host gene 15; miR-302a-3p; STAT1; inflammation
Full Text Links
  • YMJ
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr