Ann Lab Med.  2021 Mar;41(2):198-206. 10.3343/alm.2021.41.2.198.

Targeted Next-Generation Sequencing of Plasma CellFree DNA in Korean Patients with Hepatocellular Carcinoma

Affiliations
  • 1Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
  • 2Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
  • 3Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea

Abstract

Background
Hepatocellular carcinoma (HCC) is the second-most-common cause of cancer-related deaths worldwide, and an accurate and non-invasive biomarker for the early detection and monitoring of HCC is required. We assessed pathogenic variants of HCC driver genes in cell-free DNA (cfDNA) from HCC patients who had not undergone systemic therapy.
Methods
Plasma cfDNA was collected from 20 HCC patients, and deep sequencing was performed using a customized cfDNA next-generation sequencing panel, targeting the major HCC driver genes (TP53, CTNNB1, TERT) that incorporates molecular barcoding.
Results
In 13/20 (65%) patients, we identified at least one pathogenic variant of two major HCC driver genes (TP53 and CTNNB1), including 16 variants of TP53 and nine variants of CTNNB1. The TP53 and CTNNB1 variants showed low allele frequencies, with median values of 0.17% (range: 0.06%–6.99%) and 0.07% (range: 0.05%–0.96%), respectively. However, the molecular coverage of variants was sufficient, with median values of 5,543 (range: 2,317–9,088) and 7,568 (range: 2,400–9,633) for TP53 and CTNNB1 variants, respectively.
Conclusions
Our targeted DNA sequencing successfully identified low-frequency pathogenic variants in the cfDNA from HCC patients by achieving high coverage of unique molecular families. Our results support the utility of cfDNA analysis to identify somatic gene variants in HCC patients.

Keyword

Hepatocellular carcinoma; Cell-free DNA; Next-generation sequencing; Molecular barcoding; Pathogenic variants; TP53; CTNNB1; TERT

Figure

  • Fig. 1 Mean observed molecular count (VAF) compared with the designed VAF of the reference material for the six variants. Abbreviation: VAF, variant allele frequency.

  • Fig. 2 Passing–Bablok regression analysis plots for comparison of the observed and designed VAFs for each of the six variants are shown. The slope of the linear regression line for each variant ranged from 0.57 to 1.03, and, for TP53 p.R248Q and TP53 p.C242fs*5 variants, the 95% confidence interval (CI) of the slope contained 1.0. Abbreviation: VAF, variant allele frequency.


Cited by  1 articles

Clinical Practice Guidelines for Pre-Analytical Procedures of Plasma Epidermal Growth Factor Receptor Variant Testing
Saeam Shin, Hye In Woo, Jong-Won Kim, Yoonjung Kim, Kyung-A Lee
Ann Lab Med. 2022;42(2):141-149.    doi: 10.3343/alm.2022.42.2.141.


Reference

1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. 2015; Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–86. DOI: 10.1002/ijc.29210. PMID: 25220842.
Article
2. Korean Liver Cancer Association and National Cancer Center. 2019; 2018 Korean Liver Cancer Association-National Cancer Center Korea practice guidelines for the management of hepatocellular carcinoma. Gut Liver. 13:227–99. DOI: 10.5009/gnl19024. PMID: 31060120. PMCID: PMC6529163.
3. Farokhizadeh Z, Dehbidi S, Geramizadeh B, Yaghobi R, Malekhosseini SA, Behmanesh M, et al. 2019; Association of microRNA polymorphisms with hepatocellular carcinoma in an Iranian population. Ann Lab Med. 39:58–66. DOI: 10.3343/alm.2019.39.1.58. PMID: 30215231.
Article
4. Yang JD. 2019; Detect or not to detect very early stage hepatocellular carcinoma? The western perspective. Clin Mol Hepatol. 25:335–43. DOI: 10.3350/cmh.2019.0010. PMID: 30924328.
Article
5. Yang K, Sung PS, You YK, Kim DG, Oh JS, Chun HJ, et al. 2019; Pathologic complete response to chemoembolization improves survival outcomes after curative surgery for hepatocellular carcinoma: predictive factors of response. HPB (Oxford). 21:1718–26. DOI: 10.1016/j.hpb.2019.04.017. PMID: 31171489.
Article
6. Sung PS, Yang H, Na GH, Hwang S, Kang D, Jang JW, et al. 2017; Long-term outcome of liver resection versus transplantation for hepatocellular carcinoma in a region where living donation is a main source. Ann Transplant. 22:276–84. DOI: 10.12659/AOT.904287. PMID: 28473688.
Article
7. Li VD, Li KH, Li JT. 2019; TP53 mutations as potential prognostic markers for specific cancers: analysis of data from The Cancer Genome Atlas and the International Agency for Research on Cancer TP53 Database. J Cancer Res Clin Oncol. 145:625–36. DOI: 10.1007/s00432-018-2817-z. PMID: 30542790.
Article
8. Khemlina G, Ikeda S, Kurzrock R. 2017; The biology of hepatocellular carcinoma: implications for genomic and immune therapies. Mol Cancer. 16:149. DOI: 10.1186/s12943-017-0712-x. PMID: 28854942. PMCID: PMC5577674.
Article
9. Huang Z, Hua D, Hu Y, Cheng Z, Zhou X, Xie Q, et al. 2012; Quantitation of plasma circulating DNA using quantitative PCR for the detection of hepatocellular carcinoma. Pathol Oncol Res. 18:271–6. DOI: 10.1007/s12253-011-9438-z. PMID: 21779787.
Article
10. Yang YJ, Chen H, Huang P, Li CH, Dong ZH, Hou YL. 2011; Quantification of plasma hTERT DNA in hepatocellular carcinoma patients by quantitative fluorescent polymerase chain reaction. Clin Invest Med. 34:E238. DOI: 10.25011/cim.v34i4.15366. PMID: 21810382.
Article
11. Schulze K, Imbeaud S, Letouzé E, Alexandrov LB, Calderaro J, Rebouissou S, et al. 2015; Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet. 47:505–11. DOI: 10.1038/ng.3252. PMID: 25822088. PMCID: PMC4587544.
Article
12. Totoki Y, Tatsuno K, Covington KR, Ueda H, Creighton CJ, Kato M, et al. 2014; Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. Nat Genet. 46:1267–73. DOI: 10.1038/ng.3126. PMID: 25362482.
Article
13. Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. 2008; Circulating mutant DNA to assess tumor dynamics. Nat Med. 14:985–90. DOI: 10.1038/nm.1789. PMID: 18670422. PMCID: PMC2820391.
Article
14. Ulrich BC, Paweletz CP. 2018; Cell-free DNA in oncology: gearing up for clinic. Ann Lab Med. 38:1–8. DOI: 10.3343/alm.2018.38.1.1. PMID: 29071812. PMCID: PMC5700141.
Article
15. Vollbrecht C, Lehmann A, Lenze D, Hummel M. 2018; Validation and comparison of two NGS assays for the detection of EGFR T790M resistance mutation in liquid biopsies of NSCLC patients. Oncotarget. 9:18529–39. DOI: 10.18632/oncotarget.24908. PMID: 29719623. PMCID: PMC5915090.
16. Cancer Genome Atlas Research Network. 2017; Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell. 169:1327–41.e23. DOI: 10.1016/j.cell.2017.05.046,. PMID: 28622513. PMCID: PMC5680778.
17. Fujimoto A, Furuta M, Totoki Y, Tsunoda T, Kato M, Shiraishi Y, et al. 2016; Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer. Nat Genet. 48:500–9. DOI: 10.1038/ng.3547. PMID: 27064257.
Article
18. Heimbach JK, Kulik LM, Finn RS, Sirlin CB, Abecassis MM, Roberts LR, et al. 2018; AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology. 67:358–80. DOI: 10.1002/hep.29086. PMID: 28130846.
Article
19. Jeong TD, Kim MH, Park S, Chung HS, Lee JW, Chang JH, et al. 2019; Effects of pre-analytical variables on cell-free DNA extraction for liquid biopsy. Lab Med Online. 9:45–56. DOI: 10.3343/lmo.2019.9.2.45.
Article
20. He HJ, Stein EV, Konigshofer Y, Forbes T, Tomson FL, Garlick R, et al. 2019; Multilaboratory assessment of a new reference material for quality assurance of cell-free tumor DNA measurements. J Mol Diagn. 21:658–76. DOI: 10.1016/j.jmoldx.2019.03.006. PMID: 31055023. PMCID: PMC6626992.
Article
21. Rebouissou S, Franconi A, Calderaro J, Letouzé E, Imbeaud S, Pilati C, et al. 2016; Genotype-phenotype correlation of CTNNB1 mutations reveals different β-catenin activity associated with liver tumor progression. Hepatology. 64:2047–61. DOI: 10.1002/hep.28638. PMID: 27177928.
22. Kaseb AO, Sánchez NS, Sen S, Kelley RK, Tan B, Bocobo AG, et al. 2019; Molecular profiling of hepatocellular carcinoma using circulating cellfree DNA. Clin Cancer Res. 25:6107–18. DOI: 10.1158/1078-0432.CCR-18-3341. PMID: 31363003.
Article
23. Howell J, Atkinson SR, Pinato DJ, Knapp S, Ward C, Minisini R, et al. 2019; Identification of mutations in circulating cell-free tumour DNA as a biomarker in hepatocellular carcinoma. Eur J Cancer. 116:56–66. DOI: 10.1016/j.ejca.2019.04.014. PMID: 31173963.
Article
24. Schmitt MW, Kennedy SR, Salk JJ, Fox EJ, Hiatt JB, Loeb LA. 2012; Detection of ultra-rare mutations by next-generation sequencing. Proc Natl Acad Sci U S A. 109:14508–13. DOI: 10.1073/pnas.1208715109. PMID: 22853953. PMCID: PMC3437896.
Article
25. Ng CKY, Di Costanzo GG, Tosti N, Paradiso V, Coto-Llerena M, Roscigno G, et al. 2018; Genetic profiling using plasma-derived cell-free DNA in therapy-naive hepatocellular carcinoma patients: a pilot study. Ann Oncol. 29:1286–91. DOI: 10.1093/annonc/mdy083. PMID: 29509837.
Full Text Links
  • ALM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr