J Korean Med Sci.  2021 Feb;36(6):e54. 10.3346/jkms.2021.36.e54.

What We Do Know and Do Not Yet Know about COVID-19 Vaccines as of the Beginning of the Year 2021

Affiliations
  • 1Division of Infectious Diseases, Department of Internal Medicine, Bucheon St. Mary's Hospital, Bucheon, Korea
  • 2Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea

Abstract

Coronavirus disease 2019 (COVID-19), which started at the end of 2019 and has spread worldwide, has remained unabated in 2021. Since non-pharmaceutical interventions including social distancing are facing limitations in controlling COVID-19, additional absolute means to change the trend are necessary. To this end, coronavirus-specific antiviral drugs and vaccines are urgently needed, but for now, the priority is to promote herd immunity through extensive nationwide vaccination campaign. In addition to the vaccines based on the conventional technology such inactivated or killed virus or protein subunit vaccines, several vaccines on the new technological platforms, for example, nucleic acids-based vaccines delivered by viral carriers, nanoparticles, or plasmids as a medium were introduced in this pandemic. In addition to achieving sufficient herd immunity with vaccination, the development of antiviral treatments that work specifically against COVID-19 will also be necessary to terminate the epidemic completely.

Keyword

COVID-19; Vaccine; Herd Immunity

Cited by  4 articles

Intracerebral Hemorrhage due to Thrombosis with Thrombocytopenia Syndrome after Vaccination against COVID-19: the First Fatal Case in Korea
Jae-Ki Choi, Sunghan Kim, Seo Ree Kim, Jong-Youl Jin, Seon Woong Choi, Hoon Kim, Jin-Hong Yoo, Ik Seong Park, Seong-Rim Kim
J Korean Med Sci. 2021;36(31):e223.    doi: 10.3346/jkms.2021.36.e223.

Analysis of a COVID-19 Prescreening Process in an Outpatient Clinic at a University Hospital during the COVID-19 Pandemic
Ui Yoon Choi, Seung Eun Jung, Mi Sook Kim, Hyang Sook Oh, Young Mi Kwon, Jehoon Lee, Jung-Hyun Choi
J Korean Med Sci. 2021;36(42):e295.    doi: 10.3346/jkms.2021.36.e295.

Analyses of Confirmed COVID-19 Cases Among Korean Military Personnel After Mass Vaccination
Dong Hoon Shin, Hong Sang Oh, Haebong Jang, Sangho Lee, Byung Seop Choi, Donghoon Kim
J Korean Med Sci. 2022;37(3):e23.    doi: 10.3346/jkms.2022.37.e23.

Steroid injections in pain management: influence on coronavirus disease 2019 vaccines
Sung Man Hong, Yeon Wook Park, Eun Joo Choi
Korean J Pain. 2022;35(1):14-21.    doi: 10.3344/kjp.2022.35.1.14.


Reference

1. Yoo JH. Will the third wave of coronavirus disease 2019 really come in Korea? J Korean Med Sci. 2020; 35(10):e110. PMID: 32174068.
Article
2. Yoo JH. Social distancing and lessons from Sweden's lenient strategy against corona virus disease 2019. J Korean Med Sci. 2020; 35(27):e250. PMID: 32657089.
Article
3. Scavone C, Brusco S, Bertini M, Sportiello L, Rafaniello C, Zoccoli A, et al. Current pharmacological treatments for COVID-19: what's next? Br J Pharmacol. 2020; 177(21):4813–4824. PMID: 32329520.
Article
4. Izda V, Jeffries MA, Sawalha AH. COVID-19: a review of therapeutic strategies and vaccine candidates. Clin Immunol. 2021; 222:108634. PMID: 33217545.
Article
5. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. Remdesivir for the treatment of Covid-19 - final report. N Engl J Med. 2020; 383(19):1813–1826. PMID: 32445440.
Article
6. U.S. Food and Drug Administration (FDA). Coronavirus (COVID-19) update: FDA authorizes monoclonal antibodies for treatment of COVID-19. Updated 2020. Accessed January 31, 2021. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-monoclonal-antibodies-treatment-covid-19.
7. Korea Biomedical Review. Celltrion confirms efficacy of COVID-19 treatment. Updated 2021. Accessed January 31, 2021. http://www.koreabiomed.com/news/articleView.html?idxno=10149.
8. Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol. 2020; 1–18. PMID: 31792373.
Article
9. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020; 579(7798):265–269. PMID: 32015508.
Article
10. Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1, complete genome. NCBI reference sequence: NC_045512.2. Updated 2020. Accessed January 31, 2021. https://www.ncbi.nlm.nih.gov/nuccore/NC_045512.
11. Lurie N, Saville M, Hatchett R, Halton J. Developing Covid-19 vaccines at pandemic speed. N Engl J Med. 2020; 382(21):1969–1973. PMID: 32227757.
Article
12. Slaoui M, Hepburn M. Developing safe and effective Covid vaccines - operation warp speed's strategy and approach. N Engl J Med. 2020; 383(18):1701–1703. PMID: 32846056.
Article
13. Dhama K, Khan S, Tiwari R, Sircar S, Bhat S, Malik YS, et al. Coronavirus disease 2019-COVID-19. Clin Microbiol Rev. 2020; 33(4):e00028-20. PMID: 32580969.
Article
14. Salvatori G, Luberto L, Maffei M, Aurisicchio L, Roscilli G, Palombo F, et al. SARS-CoV-2 SPIKE PROTEIN: an optimal immunological target for vaccines. J Transl Med. 2020; 18(1):222. PMID: 32493510.
Article
15. Buchholz UJ, Bukreyev A, Yang L, Lamirande EW, Murphy BR, Subbarao K, et al. Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity. Proc Natl Acad Sci U S A. 2004; 101(26):9804–9809. PMID: 15210961.
Article
16. Traggiai E, Becker S, Subbarao K, Kolesnikova L, Uematsu Y, Gismondo MR, et al. An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat Med. 2004; 10(8):871–875. PMID: 15247913.
Article
17. Tai W, He L, Zhang X, Pu J, Voronin D, Jiang S, et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol. 2020; 17(6):613–620. PMID: 32203189.
Article
18. Zhao J, Yuan Q, Wang H, Liu W, Liao X, Su Y, et al. Antibody responses to SARS-CoV-2 in patients with novel coronavirus disease 2019. Clin Infect Dis. 2020; 71(16):2027–2034. PMID: 32221519.
Article
19. Callow KA, Parry HF, Sergeant M, Tyrrell DA. The time course of the immune response to experimental coronavirus infection of man. Epidemiol Infect. 1990; 105(2):435–446. PMID: 2170159.
Article
20. Cao WC, Liu W, Zhang PH, Zhang F, Richardus JH. Disappearance of antibodies to SARS-associated coronavirus after recovery. N Engl J Med. 2007; 357(11):1162–1163. PMID: 17855683.
Article
21. Wu LP, Wang NC, Chang YH, Tian XY, Na DY, Zhang LY, et al. Duration of antibody responses after severe acute respiratory syndrome. Emerg Infect Dis. 2007; 13(10):1562–1564. PMID: 18258008.
Article
22. Choi JY, Oh JO, Ahn JY, Choi H, Kim JH, Seong H, et al. Absence of neutralizing activity in serum 1 year after successful treatment with antivirals and recovery from MERS in South Korea. Clin Exp Vaccine Res. 2019; 8(1):86–88. PMID: 30775355.
Article
23. Sariol A, Perlman S. Lessons for COVID-19 immunity from other coronavirus infections. Immunity. 2020; 53(2):248–263. PMID: 32717182.
Article
24. Bachmann MF, Mohsen MO, Zha L, Vogel M, Speiser DE. SARS-CoV-2 structural features may explain limited neutralizing-antibody responses. NPJ Vaccines. 2021; 6(1):2. PMID: 33398006.
Article
25. Ciabattini A, Pettini E, Medaglini D. CD4(+) T cell priming as biomarker to study immune response to preventive vaccines. Front Immunol. 2013; 4:421. PMID: 24363656.
Article
26. Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell. 2020; 181(7):1489–1501.e15. PMID: 32473127.
Article
27. Chen K, Kolls JK. T cell-mediated host immune defenses in the lung. Annu Rev Immunol. 2013; 31(1):605–633. PMID: 23516986.
Article
28. Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol. 2020; 11:827. PMID: 32425950.
Article
29. The New York Times. Coronavirus vaccine tracker. Updated 2021. Accessed January 31, 2021. https://www.nytimes.com/interactive/2020/science/coronavirus-vaccine-tracker.html.
30. Mathew S, Faheem M, Hassain NA, Benslimane FM, Al Thani AA, Zaraket H, et al. Platforms exploited for SARS-CoV-2 vaccine development. Vaccines (Basel). 2020; 9(1):E11. PMID: 33375677.
Article
31. Zhang C, Zhou D. Adenoviral vector-based strategies against infectious disease and cancer. Hum Vaccin Immunother. 2016; 12(8):2064–2074. PMID: 27105067.
Article
32. Fausther-Bovendo H, Kobinger GP. Pre-existing immunity against Ad vectors: humoral, cellular, and innate response, what's important? Hum Vaccin Immunother. 2014; 10(10):2875–2884. PMID: 25483662.
33. Hassan AO, Kafai NM, Dmitriev IP, Fox JM, Smith BK, Harvey IB, et al. A Single-dose intranasal ChAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2. Cell. 2020; 183(1):169–184.e13. PMID: 32931734.
Article
34. Ewer K, Sebastian S, Spencer AJ, Gilbert S, Hill AV, Lambe T. Chimpanzee adenoviral vectors as vaccines for outbreak pathogens. Hum Vaccin Immunother. 2017; 13(12):3020–3032. PMID: 29083948.
Article
35. Guo J, Mondal M, Zhou D. Development of novel vaccine vectors: chimpanzee adenoviral vectors. Hum Vaccin Immunother. 2018; 14(7):1679–1685. PMID: 29300685.
Article
36. Morris SJ, Sebastian S, Spencer AJ, Gilbert SC. Simian adenoviruses as vaccine vectors. Future Virol. 2016; 11(9):649–659. PMID: 29527232.
Article
37. Colloca S, Barnes E, Folgori A, Ammendola V, Capone S, Cirillo A, et al. Vaccine vectors derived from a large collection of simian adenoviruses induce potent cellular immunity across multiple species. Sci Transl Med. 2012; 4(115):115ra2.
Article
38. van Doremalen N, Lambe T, Spencer A, Belij-Rammerstorfer S, Purushotham JN, Port JR, et al. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature. 2020; 586(7830):578–582. PMID: 32731258.
39. Voysey M, Clemens SA, Madhi SA, Weckx LY, Folegatti PM, Aley PK, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet. 2021; 397(10269):99–111. PMID: 33306989.
40. Mint. Efficacy of Oxford jabs at 95% if given 3 months apart. Updated 2020. Accessed January 31, 2021. https://www.livemint.com/science/health/efficacy-of-oxford-jabs-at-95-if-given-3-months-apart-sii-11609181643451.html.
41. Medicines and Healthcare Products Regulatory Agency of UK. Regulatory approval of COVID-19 Vaccine AstraZeneca. Updated 2021. Accessed January 31, 2021. https://www.gov.uk/government/publications/regulatory-approval-of-covid-19-vaccine-astrazeneca?fbclid=IwAR0YbnbQ8ahXnDMQy6GNpAB9uPBfSSS7AggJxOaanqrdh95Js2hA3SPTFm8.
42. Logunov DY, Dolzhikova IV, Zubkova OV, Tukhvatulin AI, Shcheblyakov DV, Dzharullaeva AS, et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet. 2020; 396(10255):887–897. PMID: 32896291.
Article
43. Mercado NB, Zahn R, Wegmann F, Loos C, Chandrashekar A, Yu J, et al. Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature. 2020; 586(7830):583–588. PMID: 32731257.
44. Sadoff J, Le Gars M, Shukarev G, Heerwegh D, Truyers C, de Groot AM, et al. Interim results of a phase 1-2a Trial of Ad26.COV2.S Covid-19 vaccine. N Engl J Med. Forthcoming. 2021; DOI: 10.1056/NEJMoa2034201.
Article
45. Janssen publishes positive safety and efficacy data for single-dose COVID-19 vaccine. Updated 2021. Accessed January 29, 2021. https://www.gov.uk/government/news/janssen-publishes-positive-safety-and-efficacy-data-for-single-dose-covid-19-vaccine?fbclid=IwAR0nmT5gGtldli6gEej-Vt8W9HfUEEU6DKP6xelHiYAVlwpa2HX6PKeMZtg.
46. Zhu FC, Li YH, Guan XH, Hou LH, Wang WJ, Li JX, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020; 395(10240):1845–1854. PMID: 32450106.
47. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov. 2018; 17(4):261–279. PMID: 29326426.
Article
48. Zhao L, Seth A, Wibowo N, Zhao CX, Mitter N, Yu C, et al. Nanoparticle vaccines. Vaccine. 2014; 32(3):327–337. PMID: 24295808.
Article
49. Karikó K, Muramatsu H, Welsh FA, Ludwig J, Kato H, Akira S, et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther. 2008; 16(11):1833–1840. PMID: 18797453.
Article
50. Schlake T, Thess A, Fotin-Mleczek M, Kallen KJ. Developing mRNA-vaccine technologies. RNA Biol. 2012; 9(11):1319–1330. PMID: 23064118.
Article
51. Anderson BR, Muramatsu H, Jha BK, Silverman RH, Weissman D, Karikó K. Nucleoside modifications in RNA limit activation of 2′-5′-oligoadenylate synthetase and increase resistance to cleavage by RNase L. Nucleic Acids Res. 2011; 39(21):9329–9338. PMID: 21813458.
Article
52. Zhang Z, Ohto U, Shibata T, Krayukhina E, Taoka M, Yamauchi Y, et al. Structural analysis reveals that Toll-like receptor 7 is a dual receptor for guanosine and single-stranded RNA. Immunity. 2016; 45(4):737–748. PMID: 27742543.
Article
53. Karikó K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity. 2005; 23(2):165–175. PMID: 16111635.
Article
54. Tanji H, Ohto U, Shibata T, Taoka M, Yamauchi Y, Isobe T, et al. Toll-like receptor 8 senses degradation products of single-stranded RNA. Nat Struct Mol Biol. 2015; 22(2):109–115. PMID: 25599397.
Article
55. Lim B, Lee K. Stability of the osmoregulated promoter-derived proP mRNA is posttranscriptionally regulated by RNase III in Escherichia coli. J Bacteriol. 2015; 197(7):1297–1305. PMID: 25645556.
56. Knights AJ, Nuber N, Thomson CW, de la Rosa O, Jäger E, Tiercy JM, et al. Modified tumour antigen-encoding mRNA facilitates the analysis of naturally occurring and vaccine-induced CD4 and CD8 T cells in cancer patients. Cancer Immunol Immunother. 2009; 58(3):325–338. PMID: 18663444.
Article
57. Flanagan KL, Best E, Crawford NW, Giles M, Koirala A, Macartney K, et al. Progress and pitfalls in the quest for effective SARS-CoV-2 (COVID-19) vaccines. Front Immunol. 2020; 11:579250. PMID: 33123165.
Article
58. Wang F, Kream RM, Stefano GB. An evidence based perspective on mRNA-SARS-CoV-2 vaccine development. Med Sci Monit. 2020; 26:e924700. PMID: 32366816.
Article
59. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020; 383(27):2603–2615. PMID: 33301246.
Article
60. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2020; NEJMoa2035389.
Article
61. Kauffman KJ, Mir FF, Jhunjhunwala S, Kaczmarek JC, Hurtado JE, Yang JH, et al. Efficacy and immunogenicity of unmodified and pseudouridine-modified mRNA delivered systemically with lipid nanoparticles in vivo. Biomaterials. 2016; 109:78–87. PMID: 27680591.
62. CureVac's mRNA-based vaccine candidate against COVID-19. Updated 2021. Accessed January 31, 2021. https://www.curevac.com/en/covid-19/.
63. Sardesai NY, Weiner DB. Electroporation delivery of DNA vaccines: prospects for success. Curr Opin Immunol. 2011; 23(3):421–429. PMID: 21530212.
Article
64. Tebas P, Yang S, Boyer JD, Reuschel EL, Patel A, Christensen-Quick A, et al. Safety and immunogenicity of INO-4800 DNA vaccine against SARS-CoV-2: a preliminary report of an open-label, phase 1 clinical trial. EClinicalMedicine. 2020; 31:100689. PMID: 33392485.
Article
65. Zhang Y, Zeng G, Pan H, Li C, Hu Y, Chu K, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis. 2020; 21(2):181–192. PMID: 33217362.
Article
66. Wang H, Zhang Y, Huang B, Deng W, Quan Y, Wang W, et al. Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2. Cell. 2020; 182(3):713–721.e9. PMID: 32778225.
Article
67. Xia S, Zhang Y, Wang Y, Wang H, Yang Y, Gao GF, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect Dis. 2021; 21(1):39–51. PMID: 33069281.
Article
68. Jeyanathan M, Afkhami S, Smaill F, Miller MS, Lichty BD, Xing Z. Immunological considerations for COVID-19 vaccine strategies. Nat Rev Immunol. 2020; 20(10):615–632. PMID: 32887954.
Article
69. Moore JP, Klasse PJ. COVID-19 vaccines: “warp speed” needs mind melds, not warped minds. J Virol. 2020; 94(17):e01083–20. PMID: 32591466.
Article
70. Keech C, Albert G, Cho I, Robertson A, Reed P, Neal S, et al. Phase 1–2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N Engl J Med. 2020; 383(24):2320–2332. PMID: 32877576.
Article
71. Novavax publishes positive efficacy data for its COVID-19 vaccine. Updated 2020. Accessed January 30, 2021. https://www.gov.uk/government/news/novavax-publishes-positive-efficacy-data-for-its-covid-19-vaccine?fbclid=IwAR3B5FI8NYLvHn3R-IxCC049TLdwHcOsJxZxA16qHM7n2NIw7P37tb47Edo.
72. What to expect after getting a COVID-19 vaccine. Updated 2020. Accessed January 31, 2021. https://www.cdc.gov/coronavirus/2019-ncov/vaccines/expect/after.html.
73. COVID-19 vaccines and allergic reactions. Updated 2020. Accessed January 31, 2021. https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/allergic-reaction.html.
74. Shimabukuro T, Nair N. Allergic reactions including anaphylaxis after receipt of the first dose of Pfizer-BioNTech COVID-19 vaccine. JAMA. Forthcoming. 2021; DOI: 10.1001/jama.2021.0600.
Article
75. What are the various ingredients in the COVID-19 vaccines? Updated 2020. Accessed January 31, 2021. https://www.goodrx.com/blog/ingredients-covid-19-vaccine/.
76. Emergency use authorization (EUA) of The Pfizer-Biontech COVID-19 vaccine to prevent coronavirus disease 2019 (COVID-19) in individuals 16 years of age and older. Updated 2020. Accessed January 31, 2021. https://www.fda.gov/media/144414/download.
77. Emergency use authorization (EUA) of the Moderna COVID-19 vaccine to prevent coronavirus disease 2019 (COVID-19) In Individuals 18 years of age and older. Updated 2020. Accessed January 31, 2021. https://www.fda.gov/media/144638/download.
78. Cabanillas B, Akdis C, Novak N. Allergic reactions to the first COVID-19 vaccine: a potential role of Polyethylene glycol? Allergy. Forthcoming. 2020; DOI: 10.1111/all.14711.
Article
79. Ganson NJ, Povsic TJ, Sullenger BA, Alexander JH, Zelenkofske SL, Sailstad JM, et al. Pre-existing anti-polyethylene glycol antibody linked to first-exposure allergic reactions to pegnivacogin, a PEGylated RNA aptamer. J Allergy Clin Immunol. 2016; 137(5):1610–1613.e7. PMID: 26688515.
Article
80. Castells MC, Phillips EJ. Maintaining safety with SARS-CoV-2 vaccines. N Engl J Med. Forthcoming. 2020; DOI: 10.1056/NEJMra2035343.
Article
81. Interim clinical considerations for use of mRNA COVID-19 vaccines currently authorized in the United States. Updated 2020. Accessed January 31, 2021. https://www.cdc.gov/vaccines/covid-19/info-by-product/clinical-considerations.html.
82. Mallapaty S, Ledford H. COVID-vaccine results are on the way - and scientists' concerns are growing. Nature. 2020; 586(7827):16–17. PMID: 32978611.
Article
83. Vaccines and related biological products advisory committee meeting December 10, 2020. Updated 2020. Accessed January 30, 2021. https://www.fda.gov/media/144245/download.
84. Vaccines and related biological products advisory committee December 17, 2020. Updated 2020. Accessed January 30, 2021. https://www.fda.gov/media/144585/download.
85. Centers for Disease Control and Prevention (CDC). Syncope after vaccination--United States, January 2005-July 2007. MMWR Morb Mortal Wkly Rep. 2008; 57(17):457–460. PMID: 18451756.
86. Torjesen I. Covid-19: Norway investigates 23 deaths in frail elderly patients after vaccination. BMJ. 2021; 372(149):n149. PMID: 33451975.
Article
87. Wan Y, Shang J, Sun S, Tai W, Chen J, Geng Q, et al. Molecular mechanism for antibody-dependent enhancement of coronavirus entry. J Virol. 2020; 94(5):e02015–9. PMID: 31826992.
Article
88. Whitehead SS, Blaney JE, Durbin AP, Murphy BR. Prospects for a dengue virus vaccine. Nat Rev Microbiol. 2007; 5(7):518–528. PMID: 17558424.
Article
89. Lee WS, Wheatley AK, Kent SJ, DeKosky BJ. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat Microbiol. 2020; 5(10):1185–1191. PMID: 32908214.
Article
90. Iwasaki A, Yang Y. The potential danger of suboptimal antibody responses in COVID-19. Nat Rev Immunol. 2020; 20(6):339–341. PMID: 32317716.
Article
91. Hotez PJ, Corry DB, Bottazzi ME. COVID-19 vaccine design: the Janus face of immune enhancement. Nat Rev Immunol. 2020; 20(6):347–348. PMID: 32346094.
Article
92. Sanche S, Lin YT, Xu C, Romero-Severson E, Hengartner N, Ke R. High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2. Emerg Infect Dis. 2020; 26(7):1470–1477. PMID: 32255761.
Article
93. Gudbjartsson DF, Norddahl GL, Melsted P, Gunnarsdottir K, Holm H, Eythorsson E, et al. Humoral immune response to SARS-CoV-2 in Iceland. N Engl J Med. 2020; 383(18):1724–1734. PMID: 32871063.
94. Widge AT, Rouphael NG, Jackson LA, Anderson EJ, Roberts PC, Makhene M, et al. Durability of responses after SARS-CoV-2 mRNA-1273 vaccination. N Engl J Med. 2021; 384(1):80–82. PMID: 33270381.
Article
95. L'Huillier AG, Meyer B, Andrey DO, Arm-Vernez I, Baggio S, Didierlaurent A, et al. Antibody persistence in the first six months following SARS-CoV-2 infection among hospital workers: a prospective longitudinal study. Clin Microbiol Infect. Forthcoming. 2021; DOI: 10.1016/j.cmi.2021.01.005.
96. Dan JM, Mateus J, Kato Y, Hastie KM, Yu ED, Faliti CE, et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science. Forthcoming. 2021; DOI: 10.1126/science.abf4063.
Article
97. Chand M, Hopkins S, Dabrera G, Achison C, Barclay W, Ferguson N, et al. Investigation of novel SARS-COV-2 variant: Variant of Concern 202012/01 (PDF) (Report). Updated 2021. Accessed January 31, 2021. https://www.gov.uk/government/publications/investigation-of-novel-sars-cov-2-variant-variant-of-concern-20201201.
98. Public Health England. Technical briefing document on novel SARS-COV-2 variant. Updated 2020. Accessed January 31, 2021. https://www.gov.uk/government/publications/investigation-of-novel-sars-cov-2-variant-variant-of-concern-20201201.
99. Wise J. Covid-19: new coronavirus variant is identified in UK. BMJ. 2020; 371:m4857. PMID: 33328153.
Article
100. Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell. 2020; 182(4):812–827.e19. PMID: 32697968.
101. Callaway E. Could new COVID variants undermine vaccines? Labs scramble to find out. Nature. 2021; 589(7841):177–178. PMID: 33432212.
Article
102. Pater AA, Bosmeny MS, Barkau CL, Ovington KN, Chilamkurthy R, Parasrampuria M, et al. Emergence and evolution of a prevalent new SARS-CoV-2 variant in the United States. Updated 2021. Accessed January 31, 2021. https://www.biorxiv.org/content/10.1101/2021.01.11.426287v1.
103. Weisblum Y, Schmidt F, Zhang F, DaSilva J, Poston D, Lorenzi JC, et al. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. eLife. 2020; 9:e61312. PMID: 33112236.
Article
104. Muik A, Wallisch AK, Sanger B, Swanson KA, Muhl J, Chen W, et al. Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine-elicited human sera. Updated 2021. Accessed January 31, 2021. https://www.biorxiv.org/content/10.1101/2021.01.18.426984v1.
105. Dearlove B, Lewitus E, Bai H, Li Y, Reeves DB, Joyce MG, et al. A SARS-CoV-2 vaccine candidate would likely match all currently circulating variants. Proc Natl Acad Sci U S A. 2020; 117(38):23652–23662. PMID: 32868447.
Article
106. Collier DA, Meng B, Ferreira IA, Datir R, Temperton N, Elmer A, et al. Impact of SARS-CoV-2 B.1.1.7 Spike variant on neutralisation potency of sera from individuals vaccinated with Pfizer vaccine BNT162b2. Updated 2021. Accessed January 31, 2021. https://www.medrxiv.org/content/10.1101/2021.01.19.21249840v1.
107. Kistler KE, Bedford T. Evidence for adaptive evolution in the receptor-binding domain of seasonal coronaviruses OC43 and 229E. eLife. 2021; 10:e64509. PMID: 33463525.
Article
108. Wibmer CK, Ayres F, Hermanus T, Madzivhandila M, Kgagudi P, Lambson BE, et al. SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Updated 2021. Accessed January 31, 2021. https://www.biorxiv.org/content/10.1101/2021.01.18.427166v1.
109. Callaway E. Fast-spreading COVID variant can elude immune responses. Nature. 2021; 589(7843):500–501. PMID: 33479534.
Article
110. Wu K, Werner AP, Moliva JI, Koch M, Choi A, Stewart-Jones GB, et al. mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants. Updated 2021. Accessed January 31, 2021. https://www.biorxiv.org/content/10.1101/2021.01.25.427948v1.
111. De Clercq E. Potential antivirals and antiviral strategies against SARS coronavirus infections. Expert Rev Anti Infect Ther. 2006; 4(2):291–302. PMID: 16597209.
Article
112. Totura AL, Bavari S. Broad-spectrum coronavirus antiviral drug discovery. Expert Opin Drug Discov. 2019; 14(4):397–412. PMID: 30849247.
Article
113. Agoni C, Soliman ME. The binding of remdesivir to SARS-CoV-2 RNA-dependent RNA polymerase may pave the way towards the design of potential drugs for COVID-19 treatment. Curr Pharm Biotechnol. Forthcoming. 2020; DOI: 10.2174/1389201021666201027154833.
Article
114. Pan X, Dong L, Yang L, Chen D, Peng C. Potential drugs for the treatment of the novel coronavirus pneumonia (COVID-19) in China. Virus Res. 2020; 286:198057. PMID: 32531236.
Article
115. Yuan S, Chan CC, Chik KK, Tsang JO, Liang R, Cao J, et al. Broad-spectrum host-based antivirals targeting the interferon and lipogenesis pathways as potential treatment options for the pandemic coronavirus disease 2019 (COVID-19). Viruses. 2020; 12(6):628.
Article
116. Boras B, Jones RM, Anson BJ, Arenson D, Aschenbrenner L, Bakowski MA, et al. Discovery of a novel inhibitor of coronavirus 3CL protease as a clinical candidate for the potential treatment of COVID-19. Updated 2021. Accessed January 31, 2021. https://www.biorxiv.org/content/10.1101/2020.09.12.293498v2.
117. Zhang WF, Stephen P, Thériault JF, Wang R, Lin SX. Novel coronavirus polymerase and nucleotidyl-transferase structures: potential to target new outbreaks. J Phys Chem Lett. 2020; 11(11):4430–4435. PMID: 32392072.
Article
118. Slanina H, Madhugiri R, Bylapudi G, Schultheiß K, Karl N, Gulyaeva A, et al. Coronavirus replication-transcription complex: vital and selective NMPylation of a conserved site in nsp9 by the NiRAN-RdRp subunit. Proc Natl Acad Sci U S A. 2021; 118(6):e2022310118. PMID: 33472860.
Article
Full Text Links
  • JKMS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr