Lab Med Online.  2020 Oct;10(4):283-294. 10.47429/lmo.2020.10.4.283.

Comparison of IRIS Iq200, UF-1000i, and Cobas u701 Module Automated Urine Sediment Analyzers

Affiliations
  • 1Department of Laboratory Medicine, Kosin University Gospel Hospital, Busan, Korea
  • 2Kosin University College of Medicine, Busan, Korea
  • 3Department of Orthopedics, Gangneung Asan Medical Center, Gangneung, Korea
  • 4Department of Internal Medicine, Kosin University Gospel Hospital, Busan, Korea

Abstract

Background
We sought to compare the performance of three commercially available automated urine sediment analyzers that represent the current urine sediment analysis technology.
Methods
A total of 232 patient samples were analyzed using manual microscopy and three automated analyzers: IRIS Iq200 (Beckman Coulter, USA), UF-1000i (Sysmex, Japan), and Cobas u701 (Roche, Switzerland). We analyzed precision, linearity, carry-over, concordance rate, and agreement between the three analyzers and manual microscopy.
Results
The repeatability and within-laboratory precision showed results similar to those of previous studies. All analyzers showed excellent linearity. The carry-over rates were within 1%. The correlation coefficient (r) between the three analyzers and manual microscopy was good. Regarding red blood cell (RBC), the UF-1000i showed a better concordance rate (90.52%) with manual microscopy than the other two analyzers and the agreement was substantial for UF-1000i (κ=0.63) and IRIS Iq200 (κ=0.61). Regarding white blood cell (WBC), Cobas u701 showed the best concordance rate (96.55%) and the agreement was moderate for IRIS Iq200 (κ=0.57) and Cobas u701 (κ=0.56), and fair for UF-1000i (κ=0.47). Regarding epithelial cell (EPI), IRIS Iq200 showed the highest concordance rate (99.2%) and the agreement was moderate for IRIS Iq200 (κ=0.59) and Cobas u701 (κ=0.54), and fair for UF-1000i (κ=0.40).
Conclusions
IRIS Iq200 offered the best agreement with manual microscopy for WBC and EPI count, while UF-1000i showed a better agreement for RBC count. The agreement is insufficient for fully replacing the manual microscopy.

Keyword

Automated urine sediment analyzers; IRIS Iq200; UF-1000i; Cobas u701

Figure

  • Fig. 1 Linearity of RBC and WBC counts tested using IRIS Iq200 (A, RBC; B, WBC), Cobas u701 (C, RBC; D, WBC), and UF-1000i (E, RBC; F, WBC) automated analyzers.


Reference

1. Clinical and Laboratory Standards Institute. 2009. Urinalysis; Approved Guideline-Third Edition. CLSI Document GP16-A3. Clinical and Laboratory Standards Institute;Wayne, PA:
2. McPherson RA, Ben-Ezra J, et al. McPherson RA, Pincus MR, editors. 2017. Basic examination of urine. Henry's clinical diagnosis and management by laboratory methods. 23rd ed. Elsevier-Saunders;Philadelphia: p. 442.
Article
3. Perazella MA. 2015; The urine sediment as a biomarker of kidney disease. Am J Kidney Dis. 66:748–55. DOI: 10.1053/j.ajkd.2015.02.342. PMID: 25943719. PMCID: PMC7446794.
Article
4. Becker GJ, Garigali G, Fogazzi GB. 2016; Advances in urine microscopy. Am J Kidney Dis. 67:954–64. DOI: 10.1053/j.ajkd.2015.11.011. PMID: 26806004. PMCID: PMC7466446.
Article
5. Manoni F, Gessoni G, Caleffi A, Alessio MG, Rosso R, Menozzi P, et al. 2013; Pediatric reference values for urine particle quantification by using automated flow cytometer: results of a multicenter study of Italian urinalysis group. Clin Biochem. 46:1820–4. DOI: 10.1016/j.clinbiochem.2013.09.005. PMID: 24051212.
Article
6. Kouri TT, Gant VA, Fogazzi GB, Hofmann W, Hallander HO, Guder WG. 2000; Towards European urinalysis guidelines. Introduction of a project under European Confederation of Laboratory Medicine. Clin Chim Acta. 297:305–11. DOI: 10.1016/S0009-8981(00)00256-4. PMID: 10841931.
7. Du J, Xu J, Wang F, Guo Y, Zhang F, Wu W, et al. 2015; Establishment and development of the personalized criteria for microscopic review following multiple automated routine urinalysis systems. Clin Chim Acta. 444:221–8. DOI: 10.1016/j.cca.2015.02.022. PMID: 25701652.
Article
8. Winkel P, Statland BE, Jørgensen K. 1974; Urine microscopy, an Ⅲ-defined method, examined by a multifactorial technique. Clin Chem. 20:436–9. DOI: 10.1093/clinchem/20.4.436. PMID: 4818195.
9. Chase J, Hammond J, Bilbrough G, DeNicola DB. 2018; Urine sediment examination: Potential impact of red and white blood cell counts using different sediment methods. Vet Clin Pathol. 47:608–16. DOI: 10.1111/vcp.12674. PMID: 30537173.
Article
10. Wargotz ES, Hyde JE, Karcher DS, Hitlan JP, Wilkinson DS. 1987; Urine sediment analysis by the Yellow IRIS automated urinalysis workstation. Am J Clin Pathol. 88:746–8. PMID: 3687846.
11. Deindoerfer FH, Gangwer JR, Laird CW, Ringold RR. 1985; "The Yellow IRIS" urinalysis workstation--the first commercial application of "automated intelligent microscopy". Clin Chem. 31:1491–9. DOI: 10.1093/clinchem/31.9.1491. PMID: 4028398.
Article
12. Roe CE, Carlson DA, Daigneault RW, Statland BE. 1986; Evaluation of the Yellow IRIS®: an automated method for urinalysis. Am J Clin Pathol. 86:661–5. DOI: 10.1093/ajcp/86.5.661. PMID: 3776920.
13. Mayo S, Acevedo D, Quiñones-Torrelo C, Canós I, Sancho M. 2008; Clinical laboratory automated urinalysis: comparison among automated microscopy, flow cytometry, two test strips analyzers, and manual microscopic examination of the urine sediments. J Clin Lab Anal. 22:262–70. DOI: 10.1002/jcla.20257. PMID: 18623125. PMCID: PMC6649239.
Article
14. Chien TI, Kao JT, Liu HL, Lin PC, Hong JS, Hsieh HP, et al. 2007; Urine sediment examination: a comparison of automated urinalysis systems and manual microscopy. Clin Chim Acta. 384:28–34. DOI: 10.1016/j.cca.2007.05.012. PMID: 17604012. PMCID: PMC6039169.
Article
15. Lee W, Ha JS, Ryoo NH. 2016; Comparison of the automated cobas u701 urine microscopy and UF-1000i flow cytometry systems and manual microscopy in the examination of urine sediments. J Clin Lab Anal. 30:663–71. DOI: 10.1002/jcla.21919. PMID: 26842372. PMCID: PMC6807231.
16. Cho J, Oh KJ, Jeon BC, Lee SG, Kim JH. 2019; Comparison of five automated urine sediment analyzers with manual microscopy for accurate identification of urine sediment. Clin Chem Lab Med. 57:1744–53. DOI: 10.1515/cclm-2019-0211. PMID: 31280239.
Article
17. Wang J, Zhang Y, Xu D, Shao W, Lu Y. 2010; Evaluation of the Sysmex UF-1000i for the diagnosis of urinary tract infection. Am J Clin Pathol. 133:577–82. DOI: 10.1309/AJCP1GT2JXOCQBCZ. PMID: 20231611.
Article
18. Manoni F, Tinello A, Fornasiero L, Hoffer P, Temporin V, Valverde S, et al. 2010; Urine particle evaluation: a comparison between the UF-1000i and quantitative microscopy. Clin Chem Lab Med. 48:1107–11. DOI: 10.1515/CCLM.2010.233. PMID: 20482296.
Article
19. Manoni F, Fornasiero L, Ercolin M, Tinello A, Ferrian M, Hoffer P, et al. 2009; Cutoff values for bacteria and leukocytes for urine flow cytometer Sysmex UF-1000i in urinary tract infections. Diagn Microbiol Infect Dis. 65:103–7. DOI: 10.1016/j.diagmicrobio.2009.06.003. PMID: 19748419.
Article
20. Bakan E, Ozturk N, Baygutalp NK, Polat E, Akpinar K, Dorman E, et al. 2016; Comparison of Cobas 6500 and Iris IQ200 fully-automated urine analyzers to manual urine microscopy. Biochem Med (Zagreb). 26:365–75. DOI: 10.11613/BM.2016.040. PMID: 27812305. PMCID: PMC5082210.
Article
21. Bakan E, Bayraktutan Z, Baygutalp NK, Gul MA, Umudum FZ, Bakan N. 2018; Evaluation of the analytical performances of Cobas 6500 and Sysmex UN series automated urinalysis systems with manual microscopic particle counting. Biochem Med (Zagreb). 28:020712. DOI: 10.11613/BM.2018.020712. PMID: 30022887. PMCID: PMC6039169.
Article
22. Wesarachkitti B, Khejonnit V, Pratumvinit B, Reesukumal K, Meepanya S, Pattanavin C, et al. 2016; Performance evaluation and comparison of the fully automated urinalysis analyzers UX-2000 and Cobas 6500. Lab Med. 47:124–33. DOI: 10.1093/labmed/lmw002. PMID: 27069030.
Article
23. Linko S, Kouri TT, Toivonen E, Ranta PH, Chapoulaud E, Lalla M. 2006; Analytical performance of the Iris iQ200 automated urine microscopy analyzer. Clin Chim Acta. 372:54–64. DOI: 10.1016/j.cca.2006.03.015. PMID: 16696963.
Article
24. Wah DT, Wises PK, Butch AW. 2005; Analytic performance of the iQ200 automated urine microscopy analyzer and comparison with manual counts using Fuchs-Rosenthal cell chambers. Am J Clin Pathol. 123:290–6. DOI: 10.1309/VNGU9Q5V932D74NU. PMID: 15842056.
Article
25. Clinical and Laboratory Standards Institute. 2004. Evaluation of precision performance of quantitative measurement methods; Approved guideline. CLSI document EP05-A2. 2nd ed. Clinical and Laboratory Standards Institute;Wayne, PA:
26. Clinical and Laboratory Standards Institute. 2003. Evaluation of the linearity of quantitative measurement procedures: A statistical approach; Approved guideline. CLSI document EP06-A. Clinical and Laboratory Standards Institute;Wayne, PA:
27. 2003. Laboratory automation. Clinical chemistry: theory, analysis, correlation. 4th ed. Mosby;Baltimore: p. 294.
28. Landis JR, Koch GG. 1977; The measurement of observer agreement for categorical data. Biometrics. 33:159–74. DOI: 10.2307/2529310. PMID: 843571.
Article
29. Budak YU, Huysal K. 2011; Comparison of three automated systems for urine chemistry and sediment analysis in routine laboratory practice. Clin Lab. 57:47–52. PMID: 21391464.
30. Cui M, Ju S, Shi Y, Jing R. 2017; Performance verification of the Iris iQ200 Sprint automated urine microscopy analyzer in a hospital routine laboratory. Clin Lab. 63:1607–12. DOI: 10.7754/Clin.Lab.2017.170318. PMID: 29035449.
Article
31. Park J, Kim J. 2008; Evaluation of iQ200 automated urine microscopy analyzer. Korean J Lab Med. 28:267–73. DOI: 10.3343/kjlm.2008.28.4.267. PMID: 18728375. PMCID: PMC6804654.
Article
32. Altekin E, Kadiçesme O, Akan P, Kume T, Vupa O, Ergor G, et al. 2010; New generation IQ-200 automated urine microscopy analyzer compared with KOVA cell chamber. J Clin Lab Anal. 24:67–71. DOI: 10.1002/jcla.20319. PMID: 20333768. PMCID: PMC6647716.
Article
33. Ottiger C, Huber AR. 2003; Quantitative urine particle analysis: integrative approach for the optimal combination of automation with UF-100 and microscopic review with KOVA cell chamber. Clinl Chem. 49:617–23. DOI: 10.1373/49.4.617. PMID: 12651815.
Article
34. Langlois MR, Delanghe JR, Steyaert SR, Everaert KC, De Buyzere ML. 1999; Automated flow cytometry compared with an automated dipstick reader for urinalysis. Clin Chem. 45:118–22. DOI: 10.1093/clinchem/45.1.118. PMID: 9895347.
Article
35. Ben-Ezra J, Bork L, McPherson RA. 1998; Evaluation of the Sysmex UF-100 automated urinalysis analyzer. Clin Chem. 44:92–5. DOI: 10.1093/clinchem/44.1.92. PMID: 9550564.
Article
36. Zaman Z, Fogazzi GB, Garigali G, Croci MD, Bayer G, Kránicz T. 2010; Urine sediment analysis: Analytical and diagnostic performance of sediMAX® - A new automated microscopy image-based urine sediment analyser. Clin Chima Acta. 411:147–54. DOI: 10.1016/j.cca.2009.10.018. PMID: 19861122.
Article
37. Enko D, Stelzer I, Böckl M, Derler B, Schnedl WJ, Anderssohn P, et al. 2020; Comparison of the diagnostic performance of two automated urine sediment analyzers with manual phase-contrast microscopy. Clin Chem Lab Med. 58:268–73. DOI: 10.1515/cclm-2019-0919. PMID: 31605578.
Article
38. Bartosova K, Kubicek Z, Franekova J, Louzensky G, Lavrikova P, Jabor A. 2016; Analysis of four automated urinalysis systems compared to reference methods. Clin Lab. 62:2115–23. DOI: 10.7754/Clin.Lab.2016.160316. PMID: 28164659.
Article
39. Cao Y, Cheng M, Hu C. 2012; UrineCART, a machine learning method for establishment of review rules based on UF-1000i flow cytometry and dipstick or reflectance photometer. Clin Chem Lab Med. 50:2155–61. DOI: 10.1515/cclm-2012-0272. PMID: 23093270.
Article
Full Text Links
  • LMO
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr