Investig Magn Reson Imaging.  2020 Dec;24(4):214-222. 10.13104/imri.2020.24.4.214.

Cascaded Residual Dense Networks for Dynamic MR Imaging with Edge-Enhanced Loss Constraint

Affiliations
  • 1Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
  • 2Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China

Abstract

Dynamic magnetic resonance (MR) imaging has generated great research interest, because it can provide both spatial and temporal information for clinical diagnosis. However, slow imaging speed or long scanning time is still a challenge for dynamic MR imaging. Most existing methods reconstruct dynamic MR images from incomplete k-space data under the guidance of compressed sensing (CS) or lowrank theory, which suffer from long iterative reconstruction time. Recently, deep learning has shown great potential in accelerating dynamic MR. Our previous work proposed a dynamic MR imaging method with both k-space and spatial prior knowledge integrated via multi-supervised network training. Nevertheless, there was still some smoothing needed in the reconstructed images at high acceleration. In this work, we propose cascaded residual dense networks for dynamic MR imaging with edge-enhanced loss constraint, dubbed cascaded residual dense networks (CRDN). Specifically, the cascaded residual dense networks fully exploit the hierarchical features from all the convolutional layers with both local and global feature fusion. We further use the higher-degree total variation loss function, which has the edge enhancement properties, for training the networks.

Keyword

Dynamic MR imaging; Deep learning; Compressed sensing; Dense; Local feature; Global feature; Total variation
Full Text Links
  • IMRI
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr