Korean J Pain.  2021 Jan;34(1):4-18. 10.3344/kjp.2021.34.1.4.

Mirogabalin: could it be the next generation gabapentin or pregabalin?

Affiliations
  • 1Department of Anesthesia and Pain Medicine, Pusan National University School of Medicine, Yangsan, Korea
  • 2Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

Abstract

Except for carbamazepine for trigeminal neuralgia, gabapentinoid anticonvulsants have been the standard for the treatment of neuropathic pain. Pregabalin, which followed gabapentin, was developed with the benefit of rapid peak blood concentration and better bioavailability. Mirogabalin besylate (DS-5565, Tarlige® ) shows greater sustained analgesia due to a high affinity to, and slow dissociation from, the α2 δ-1 subunits in the dorsal root ganglion (DRG). Additionally, it produces a lower level of central nervous system-specific adverse drug reactions (ADRs), due to a low affinity to, and rapid dissociation from, the α2 δ-2 subunits in the cerebellum. Maximum plasma concentration is achieved in less than 1 hour, compared to 1 hour for pregabalin and 3 hours for gabapentin. The plasma protein binding is relatively low, at less than 25%. As with all gabapentinoids, it is also largely excreted via the kidneys in an unchanged form, and so the administration dose should also be adjusted according to renal function. The equianalgesic daily dose for 30 mg of mirogabalin is 600 mg of pregabalin and over 1,200 mg of gabapentin. The initial adult dose starts at 5 mg, given orally twice a day, and is gradually increased by 5 mg at an interval of at least a week, to 15 mg. In conclusion, mirogabalin is anticipated to be a novel, safe gabapentinoid anticonvulsant with a greater therapeutic effect for neuropathic pain in the DRG and lower ADRs in the cerebellum.

Keyword

Analgesia; Anticonvulsants; Ataxia; Calcium Channels; Cerebellum; Dizziness; Gabapentin; Ganglia; Spinal; Mirogabalin; Neuralgia; Pregabalin; Sleepiness

Figure

  • Fig. 1 A schematic illustration of the mechanisms of action for mirogabalin. Mirogabalin has a high affinity to and slow dissociation from the α2δ-1 subunits in the dorsal root ganglia (DRGs), producing greater therapeutic effects; it also has a low affinity to and fast dissociation from the α2δ-2 subunits in the cerebellum, producing lesser adverse drug reactions. In general, various mechanisms of action for gabapentinoids are suggested from inside the cell, membrane, and synapse. (1) Gabapentinoids inhibit forward (anterograde) trafficking of voltage-gated calcium channels (VGCCs) (from the endoplasmic reticulum through the Golgi complex to the cell membrane) intracellularly. Inhibition of anterograde trafficking reduces VGCCs, calcium entry, and excitatory amino acids (glutamates). (2) They inhibit the Rab-11-dependent final recycling of endosomal VGCCs intracellularly, resulting in reduced excitatory neurotransmitter release in the synapse. The small guanosine triphosphatases (GTPases, Rab) are the main regulators of intracellular membrane trafficking, from formation of transport vesicles to their fusion into the membranes. Reduced recycling of endosomal VGCCs results in reduced transmembrane VGCCs, calcium entry into the cell, and glutamate in the synapse. (3) They inhibit astrocyte-derived thrombospondin (TSP, extracellular matrix protein)-mediated excitatory synapse formation extracellularly (reduction of excitatory synaptogenesis). (4) They stimulate glutamate uptake by excitatory amino acid transporters (EAATs) extracellularly. (5) Gabapentinoids may show inhibition of descending serotonergic facilitation, stimulation of descending inhibition, anti-inflammatory effect, and influence on the affective component of pain. A magnified illustration for the transmembrane VGCC is shown in the upper left (in the DRGs) and right (in the cerebellum) quadrants. Adapted from Chincholkar M. Analgesic mechanisms of gabapentinoids and effects in experimental pain models: a narrative review. Br J Anaesth 2018; 120: 1315-34 [14].


Reference

1. Dolphin AC. 2013; The α2δ subunits of voltage-gated calcium channels. Biochim Biophys Acta. 1828:1541–9. DOI: 10.1016/j.bbamem.2012.11.019. PMID: 23196350.
Article
2. Deeks ED. 2019; Mirogabalin: first global approval. Drugs. 79:463–8. DOI: 10.1007/s40265-019-01070-8. PMID: 30778848.
Article
3. Deeks ED. 2019; Correction to: mirogabalin: first global approval. Drugs. 79:469. DOI: 10.1007/s40265-019-01082-4. PMID: 30806973.
Article
4. Kim KH, Seo HJ, Abdi S, Huh B. 2020; All about pain pharmacology: what pain physicians should know. Korean J Pain. 33:108–20. DOI: 10.3344/kjp.2020.33.2.108. PMID: 32235011. PMCID: PMC7136290.
Article
5. Hauser AS, Attwood MM, Rask-Andersen M, Schiöth HB, Gloriam DE. 2017; Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov. 16:829–42. DOI: 10.1038/nrd.2017.178. PMID: 29075003. PMCID: PMC6882681.
Article
6. Domon Y, Arakawa N, Inoue T, Matsuda F, Takahashi M, Yamamura N, et al. 2018; Binding characteristics and analgesic effects of mirogabalin, a novel ligand for the α2δ subunit of voltage-gated calcium channels. J Pharmacol Exp Ther. 365:573–82. DOI: 10.1124/jpet.117.247551. PMID: 29563324.
Article
7. Dolphin AC. 2018; Voltage-gated calcium channel α2δ subunits: an assessment of proposed novel roles. F1000Res. 7:F1000 Faculty Rev-1830. DOI: 10.12688/f1000research.16104.1. PMID: 30519455. PMCID: PMC6249638.
Article
8. Dolphin AC. 2012; Calcium channel auxiliary α2δ and β subunits: trafficking and one step beyond. Nat Rev Neurosci. 13:542–55. DOI: 10.1038/nrn3311. PMID: 22805911.
Article
9. Burnashev N. 1998; Calcium permeability of ligand-gated channels. Cell Calcium. 24:325–32. DOI: 10.1016/S0143-4160(98)90056-2. PMID: 10091002.
Article
10. Catterall WA. 2011; Voltage-gated calcium channels. Cold Spring Harb Perspect Biol. 3:a003947. DOI: 10.1101/cshperspect.a003947. PMID: 21746798. PMCID: PMC3140680.
Article
11. D'Arco M, Margas W, Cassidy JS, Dolphin AC. 2015; The upregulation of α2δ-1 subunit modulates activity-dependent Ca2+ signals in sensory neurons. J Neurosci. 35:5891–903. DOI: 10.1523/JNEUROSCI.3997-14.2015. PMID: 25878262. PMCID: PMC4397591.
12. Hoppa MB, Lana B, Margas W, Dolphin AC, Ryan TA. 2012; α2δ expression sets presynaptic calcium channel abundance and release probability. Nature. 486:122–5. DOI: 10.1038/nature11033. PMID: 22678293. PMCID: PMC3376018.
Article
13. Davies A, Hendrich J, Van Minh AT, Wratten J, Douglas L, Dolphin AC. 2007; Functional biology of the alpha(2)delta subunits of voltage-gated calcium channels. Trends Pharmacol Sci. 28:220–8. DOI: 10.1016/j.tips.2007.03.005. PMID: 17403543.
14. Chincholkar M. 2018; Analgesic mechanisms of gabapentinoids and effects in experimental pain models: a narrative review. Br J Anaesth. 120:1315–34. DOI: 10.1016/j.bja.2018.02.066. PMID: 29793598.
Article
15. Patel R, Dickenson AH. 2016; Mechanisms of the gabapentinoids and α 2 δ-1 calcium channel subunit in neuropathic pain. Pharmacol Res Perspect. 4:e00205. DOI: 10.1002/prp2.205. PMID: 27069626. PMCID: PMC4804325.
16. El-Awaad E, Pryymachuk G, Fried C, Matthes J, Isensee J, Hucho T, et al. 2019; Direct, gabapentin-insensitive interaction of a soluble form of the calcium channel subunit α2δ-1 with thrombospondin-4. Sci Rep. 9:16272. DOI: 10.1038/s41598-019-52655-y. PMID: 31700036. PMCID: PMC6838084.
Article
17. Brini M, Calì T, Ottolini D, Carafoli E. 2014; Neuronal calcium signaling: function and dysfunction. Cell Mol Life Sci. 71:2787–814. DOI: 10.1007/s00018-013-1550-7. PMID: 24442513.
Article
18. Alcántara Montero A, Sánchez Carnerero CI, Goicoechea García C. 2019; Emerging therapies in clinical development and new contributions for neuropathic pain. Rev Esp Anestesiol Reanim. 66:324–34. DOI: 10.1016/j.redar.2019.02.003. PMID: 31010688.
Article
19. Javed S, Alam U, Malik RA. 2018; Mirogabalin and emerging therapies for diabetic neuropathy. J Pain Res. 11:1559–66. DOI: 10.2147/JPR.S145999. PMID: 30174455. PMCID: PMC6110292.
Article
20. Alyoubi RA, Alshareef AA, Aldughaither SM, Aljaroudi AM, Alabdulwahed A, Alduraibi FM, et al. 2020; and safety of mirogabalin treatment in patients with diabetic peripheral neuropathic pain: a systematic review and meta-analysis of randomised controlled trials. Int J Clin Pract. doi: 10.1111/ijcp.13744. DOI: 10.1111/ijcp.13744. PMID: 32991782.
21. Calandre EP, Rico-Villademoros F, Slim M. 2016; Alpha2delta ligands, gabapentin, pregabalin and mirogabalin: a review of their clinical pharmacology and therapeutic use. Expert Rev Neurother. 16:1263–77. DOI: 10.1080/14737175.2016.1202764. PMID: 27345098.
Article
22. Merante D. 2020; The mirogabalin ALDAY phase 3 program in pain associated with fibromyalgia: the lessons learned. Curr Med Res Opin. 36:661–6. DOI: 10.1080/03007995.2020.1725744. PMID: 32027198.
Article
23. Burgess J, Javed S, Frank B, Malik RA, Alam U. 2020; Mirogabalin besylate in the treatment of neuropathic pain. Drugs Today (Barc). 56:135–49. DOI: 10.1358/dot.2020.56.2.3100504. PMID: 32163529.
Article
24. Jansen M, Warrington S, Dishy V, Ohwada S, Johnson L, Brown K, et al. 2018; A randomized, placebo-controlled, double-blind study of the safety, tolerability, pharmacokinetics, and pharmacodynamics of single and repeated doses of mirogabalin in healthy Asian volunteers. Clin Pharmacol Drug Dev. 7:661–9. DOI: 10.1002/cpdd.448. PMID: 29663714.
Article
25. Tetsunaga T, Tetsunaga T, Nishida K, Misawa H, Takigawa T, Yamane K, et al. 2020; Short-term outcomes of mirogabalin in patients with peripheral neuropathic pain: a retrospective study. J Orthop Surg Res. 15:191. DOI: 10.1186/s13018-020-01709-3. PMID: 32456647. PMCID: PMC7249688.
Article
26. Kato J, Matsui N, Kakehi Y, Murayama E, Ohwada S. 2020; Long-term safety and efficacy of mirogabalin in Asian patients with postherpetic neuralgia: results from an open-label extension of a multicenter randomized, double-blind, placebo-controlled trial. Medicine (Baltimore). 99:e21976. DOI: 10.1097/MD.0000000000021976. PMID: 32899037. PMCID: PMC7478715.
27. Kato J, Matsui N, Kakehi Y, Murayama E, Ohwada S, Sugihara M. 2019; Mirogabalin for the management of postherpetic neuralgia: a randomized, double-blind, placebo-controlled phase 3 study in Asian patients. Pain. 160:1175–85. DOI: 10.1097/j.pain.0000000000001501. PMID: 30913164. PMCID: PMC6485311.
Article
28. Ye X, Gray E, Wang YF, Wang SJ. 2020; Cost-effectiveness of mirogabalin for the treatment of post-herpetic neuralgia in Taiwan. J Med Econ. 23:529–36. DOI: 10.1080/13696998.2020.1720694. PMID: 31971469.
Article
29. Baba M, Matsui N, Kuroha M, Wasaki Y, Ohwada S. 2019; Mirogabalin for the treatment of diabetic peripheral neuropathic pain: a randomized, double-blind, placebo-controlled phase III study in Asian patients. J Diabetes Investig. 10:1299–306. DOI: 10.1111/jdi.13013. PMID: 30672128. PMCID: PMC6717827.
Article
30. Vinik A, Rosenstock J, Sharma U, Feins K, Hsu C, Merante D. DS5565-A-U201 US Phase II Study Investigators. 2014; Efficacy and safety of mirogabalin (DS-5565) for the treatment of diabetic peripheral neuropathic pain: a randomized, double-blind, placebo- and active comparator-controlled, adaptive proof-of-concept phase 2 study. Diabetes Care. 37:3253–61. DOI: 10.2337/dc14-1044. PMID: 25231896.
Article
31. Merante D, Rosenstock J, Sharma U, Feins K, Hsu C, Vinik A. DS-5565-A-U201 US Phase 2 Study Investigators. 2017; Efficacy of mirogabalin (DS-5565) on patient-reported pain and sleep interference in patients with diabetic neuropathic pain: secondary outcomes of a phase II proof-of-concept study. Pain Med. 18:2198–207. DOI: 10.1093/pm/pnw342. PMID: 28371941.
Article
32. Baba M, Kuroha M, Ohwada S, Murayama E, Matsui N. 2020; Results of mirogabalin treatment for diabetic peripheral neuropathic pain in Asian subjects: a phase 2, double-blind, randomized, placebo-controlled, study. Pain Ther. 9:261–78. DOI: 10.1007/s40122-020-00156-6. PMID: 32052264. PMCID: PMC7203334.
Article
33. Baba M, Matsui N, Kuroha M, Wasaki Y, Ohwada S. 2020; Long-term safety and efficacy of mirogabalin in Asian patients with diabetic peripheral neuropathic pain. J Diabetes Investig. 11:693–8. DOI: 10.1111/jdi.13178. PMID: 31722446. PMCID: PMC7232295.
Article
34. Hutmacher MM, Frame B, Miller R, Truitt K, Merante D. 2016; Exposure-response modeling of average daily pain score, and dizziness and somnolence, for mirogabalin (DS-5565) in patients with diabetic peripheral neuropathic pain. J Clin Pharmacol. 56:67–77. DOI: 10.1002/jcph.567. PMID: 26073181.
Article
35. Arnold LM, Whitaker S, Hsu C, Jacobs D, Merante D. 2019; Efficacy and safety of mirogabalin for the treatment of fibromyalgia: results from three 13-week randomized, double-blind, placebo- and active-controlled, parallel-group studies and a 52-week open-label extension study. Curr Med Res Opin. 35:1825–35. DOI: 10.1080/03007995.2019.1629757. PMID: 31284771.
Article
36. Kim K, Isu T, Kokubo R, Iwamoto N, Morimoto D, Kawauchi M, et al. 2020; Therapeutic effect of mirogabalin on peripheral neuropathic pain due to lumbar spine disease. Asian Spine J. doi: 10.31616/asj.2020.0136. DOI: 10.31616/asj.2020.0136. PMID: 32872751.
Article
37. Baba M, Takatsuna H, Matsui N, Ohwada S. 2020; Mirogabalin in Japanese patients with renal impairment and pain associated with diabetic peripheral neuropathy or post-herpetic neuralgia: a phase III, open-label, 14-week study. J Pain Res. 13:1811–21. DOI: 10.2147/JPR.S255345. PMID: 32765056. PMCID: PMC7381826.
38. Kato M, Tajima N, Shimizu T, Sugihara M, Furihata K, Harada K, et al. 2018; Pharmacokinetics and safety of a single oral dose of mirogabalin in Japanese subjects with varying degrees of renal impairment. J Clin Pharmacol. 58:57–63. DOI: 10.1002/jcph.974. PMID: 28834546. PMCID: PMC5763271.
Article
39. Yin OQ, Merante D, Truitt K, Miller R. 2016; Population pharmacokinetic modeling and simulation for assessing renal impairment effect on the pharmacokinetics of mirogabalin. J Clin Pharmacol. 56:203–12. DOI: 10.1002/jcph.584. PMID: 26138993.
Article
40. Duchin K, Senaldi G, Warren V, Marbury T, Lasseter K, Zahir H. 2018; Open-label single-dose study to assess the effect of mild and moderate hepatic impairment on the pharmacokinetics of mirogabalin. Clin Drug Investig. 38:1001–9. DOI: 10.1007/s40261-018-0692-7. PMID: 30171457.
Article
41. Dow J, Currie A, He L, Zaidi F, Zahir H. 2018; Effect of coadministration of metformin with mirogabalin: results from a phase 1, randomized, open-label, drug-drug interaction study. Int J Clin Pharmacol Ther. 56:451–8. DOI: 10.5414/CP203185. PMID: 30049303.
42. Tachibana M, Yamamura N, Atiee GJ, Hsu C, Warren V, He L, et al. 2018; Coadministration of probenecid and cimetidine with mirogabalin in healthy subjects: a phase 1, randomized, open-label, drug-drug interaction study. Br J Clin Pharmacol. 84:2317–24. DOI: 10.1111/bcp.13674. PMID: 29920736. PMCID: PMC6138503.
Article
43. Jansen M, Mendell J, Currie A, Dow J, He L, Merante D, et al. 2018; Pharmacokinetics, pharmacodynamics, safety, and tolerability of mirogabalin when coadministered with lorazepam, zolpidem, tramadol, or ethanol: results from drug-drug interaction studies in healthy subjects. Clin Pharmacol Drug Dev. 7:597–612. DOI: 10.1002/cpdd.582. PMID: 29870596.
Article
44. Brown K, Mendell J, Ohwada S, Hsu C, He L, Warren V, et al. 2018; Tolerability, pharmacokinetics, and pharmacodynamics of mirogabalin in healthy subjects: results from phase 1 studies. Pharmacol Res Perspect. 6:e00418. DOI: 10.1002/prp2.418. PMID: 30151212. PMCID: PMC6106189.
Article
45. Mendell J, Levy-Cooperman N, Sellers E, Vince B, Kelsh D, Lee J, et al. 2019; Abuse potential of mirogabalin in recreational polydrug users. Ther Adv Drug Saf. 10:2042098619836032. DOI: 10.1177/2042098619836032. PMID: 31057786. PMCID: PMC6452577.
Article
46. Takahashi S, Ogata A, Nakamura M. 2020; A probable case of mirogabalin-induced neutropenia. Cureus. 12:e10182. DOI: 10.7759/cureus.10182. PMID: 33029462. PMCID: PMC7529494.
Article
47. Matsuda KM, Tanaka-Mizutsugu H, Kishi Y, Hino H, Kagami S. 2020; A case of trigeminal trophic syndrome responding to mirogabalin. Eur J Dermatol. doi: 10.1684/ejd.2020.3746. DOI: 10.1684/ejd.2020.3746. PMID: 32281930.
Article
48. Kumar P, Thomas J. 2014; Trigeminal trophic syndrome. Indian J Dermatol. 59:75–6. DOI: 10.4103/0019-5154.123506. PMID: 24470665. PMCID: PMC3884933.
Article
49. Kitano Y, Wakimoto S, Tamura S, Kubota K, Domon Y, Arakawa N, et al. 2019; Effects of mirogabalin, a novel ligand for the α₂δ subunit of voltage-gated calcium channels, on N-type calcium channel currents of rat dorsal root ganglion culture neurons. Pharmazie. 74:147–9. DOI: 10.1691/ph.2019.8833. PMID: 30961679.
50. Domon Y, Kitano Y, Makino M. 2018; Analgesic effects of the novel α₂δ ligand mirogabalin in a rat model of spinal cord injury. Pharmazie. 73:659–61. DOI: 10.1691/ph.2018.8550. PMID: 30396385.
51. Murasawa H, Kobayashi H, Saeki K, Kitano Y. 2020; Anxiolytic effects of the novel α2δ ligand mirogabalin in a rat model of chronic constriction injury, an experimental model of neuropathic pain. Psychopharmacology (Berl). 237:189–97. DOI: 10.1007/s00213-019-05356-3. PMID: 31515584.
Article
52. Murasawa H, Kobayashi H, Yasuda SI, Saeki K, Domon Y, Arakawa N, et al. 2020; Anxiolytic-like effects of mirogabalin, a novel ligand for α2δ ligand of voltage-gated calcium channels, in rats repeatedly injected with acidic saline intramuscularly, as an experimental model of fibromyalgia. Pharmacol Rep. 72:571–9. DOI: 10.1007/s43440-020-00103-4. PMID: 32270470.
Article
53. Saeki K, Yasuda SI, Kato M, Kano M, Domon Y, Arakawa N, et al. 2019; Analgesic effects of mirogabalin, a novel ligand for α2δ subunit of voltage-gated calcium channels, in experimental animal models of fibromyalgia. Naunyn Schmiedebergs Arch Pharmacol. 392:723–8. DOI: 10.1007/s00210-019-01628-z. PMID: 30770951.
Article
54. Iwai T, Kikuchi A, Oyama M, Watanabe S, Tanabe M. 2020; Mirogabalin prevents repeated restraint stress-induced dysfunction in mice. Behav Brain Res. 383:112506. DOI: 10.1016/j.bbr.2020.112506. PMID: 31982462.
Article
55. Kitano Y, Kai K, Yamamura N, Yoshiba S, Kuroha M. 2019; [Pharmacological, pharmacodynamics, and clinical profile of mirogabalin besylate (Tarlige® tablets 2.5 mg∙5 mg∙10 mg∙15 mg)]. Nihon Yakurigaku Zasshi. 154:352–61. Japanese. DOI: 10.1254/fpj.154.352. PMID: 31787689.
56. Gong N, Park J, Luo ZD. 2018; Injury-induced maladaptation and dysregulation of calcium channel α2δ subunit proteins and its contribution to neuropathic pain development. Br J Pharmacol. 175:2231–43. DOI: 10.1111/bph.13930. PMID: 28646556. PMCID: PMC5980513.
Article
57. Bockbrader HN, Wesche D, Miller R, Chapel S, Janiczek N, Burger P. 2010; A comparison of the pharmacokinetics and pharmacodynamics of pregabalin and gabapentin. Clin Pharmacokinet. 49:661–9. DOI: 10.2165/11536200-000000000-00000. PMID: 20818832.
Article
Full Text Links
  • KJP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr