Int J Stem Cells.  2020 Nov;13(3):312-325. 10.15283/ijsc20097.

The Role and Specific Mechanism of OCT4 in Cancer Stem Cells: A Review

Affiliations
  • 1Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China

Abstract

Recently, evidences show that cancer stem cells (CSCs) are a type of cancer cell group with self-renewal and play a huge role in tumor recurrence, metastasis, and drug resistance. Finding new treatment directions and targets for cancer prognosis and reducing mortality has become a top priority. OCT4, as a transcription factor, participates in maintaining the stem characteristics of CSCs, but the mechanism of OCT4 is often overlooked. In this review, we try to illustrate the mechanism by which OCT4 plays a role in CSCs from the perspective of genetic modification of OCT4, non-coding RNA, complexes and signaling pathways associated with OCT4. Our ultimate goal is to provide new targets for cancer treatment to prolong the survival of cancer patients.

Keyword

Cancer stem cell; OCT4; Epigenetic modification; Non-coding RNA; Complex; Signal pathway

Figure

  • Fig. 1 Epigenetic modification related to OCT4. This figure tries to explain the role of epigenetic modification in different periods of OCT4 expression. Met: methylation, P: phosphorylation, Ac: acetylation, Ub: ubiquitination, SUMO: SUMOylation, O-GlcNAc: monosaccharide O-linked β-N-acetylglucosamine.

  • Fig. 2 Several OCT4-related signaling pathways that participate in regulating CSCs. This figure shows several OCT4-related signaling pathways that participate in regulating CSCs.


Reference

References

1. Pozzi V, Salvolini E, Lucarini G, Salvucci A, Campagna R, Rubini C, Sartini D, Emanuelli M. 2020; Cancer stem cell enrichment is associated with enhancement of nicotinamide N-methyltransferase expression. IUBMB Life. 72:1415–1425. DOI: 10.1002/iub.2265. PMID: 32150326.
Article
2. Unver N. 2020; Cancer stemness as a target for immunotherapy is shaped by pro-inflammatory stress. Curr Stem Cell Res Ther. doi:10.2174/1574888X15666200309145901. [Epub ahead of print]. DOI: 10.2174/1574888X15666200309145901. PMID: 32148202.
Article
3. Mortezaee K. 2020; CXCL12/CXCR4 axis in the microenvironment of solid tumors: a critical mediator of metastasis. Life Sci. 249:117534. DOI: 10.1016/j.lfs.2020.117534. PMID: 32156548.
Article
4. Tahmasebi E, Alikhani M, Yazdanian A, Yazdanian M, Tebyanian H, Seifalian A. 2020; The current markers of cancer stem cell in oral cancers. Life Sci. 249:117483. DOI: 10.1016/j.lfs.2020.117483. PMID: 32135187.
Article
5. Bigdelou Z, Mortazavi Y, Saltanatpour Z, Asadi Z, Kadivar M, Johari B. 2020; Role of Oct4-Sox2 complex decoy oligodeoxynucleotides strategy on reverse epithelial to mesenchymal transition (EMT) induction in HT29-ShE encompassing enriched cancer stem-like cells. Mol Biol Rep. 47:1859–1869. DOI: 10.1007/s11033-020-05280-2. PMID: 32016633.
Article
6. Zhao Y, Li C, Huang L, Niu S, Lu Q, Gong D, Huang S, Yuan Y, Chen H. 2018; Prognostic value of association of OCT4 with LEF1 expression in esophageal squamous cell carcinoma and their impact on epithelial-mesenchymal transition, invasion, and migration. Cancer Med. 7:3977–3987. DOI: 10.1002/cam4.1641. PMID: 29974668. PMCID: PMC6089166.
Article
7. Zeineddine D, Hammoud AA, Mortada M, Boeuf H. 2014; The Oct4 protein: more than a magic stemness marker. Am J Stem Cells. 3:74–82. PMID: 25232507. PMCID: PMC4163606.
8. van Schaijik B, Davis PF, Wickremesekera AC, Tan ST, Itinteang T. 2018; Subcellular localisation of the stem cell markers OCT4, SOX2, NANOG, KLF4 and c-MYC in cancer: a review. J Clin Pathol. 71:88–91. DOI: 10.1136/jclinpath-2017-204815. PMID: 29180509.
Article
9. Shi G, Jin Y. 2010; Role of Oct4 in maintaining and regaining stem cell pluripotency. Stem Cell Res Ther. 1:39. DOI: 10.1186/scrt39. PMID: 21156086. PMCID: PMC3025441.
Article
10. Okamoto K, Okazawa H, Okuda A, Sakai M, Muramatsu M, Hamada H. 1990; A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. Cell. 60:461–472. DOI: 10.1016/0092-8674(90)90597-8. PMID: 1967980.
Article
11. Schöler HR, Ruppert S, Suzuki N, Chowdhury K, Gruss P. 1990; New type of POU domain in germ line-specific protein Oct-4. Nature. 344:435–439. DOI: 10.1038/344435a0. PMID: 1690859.
Article
12. Rosner MH, Vigano MA, Ozato K, Timmons PM, Poirier F, Rigby PW, Staudt LM. 1990; A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature. 345:686–692. DOI: 10.1038/345686a0. PMID: 1972777.
Article
13. Kim JB, Sebastiano V, Wu G, Araúzo-Bravo MJ, Sasse P, Gentile L, Ko K, Ruau D, Ehrich M, van den Boom D, Meyer J, Hübner K, Bernemann C, Ortmeier C, Zenke M, Fleischmann BK, Zaehres H, Schöler HR. 2009; Oct4-induced pluripotency in adult neural stem cells. Cell. 136:411–419. DOI: 10.1016/j.cell.2009.01.023. PMID: 19203577.
Article
14. Tai MH, Chang CC, Kiupel M, Webster JD, Olson LK, Trosko JE. 2005; Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis. 26:495–502. DOI: 10.1093/carcin/bgh321. PMID: 15513931.
Article
15. Shao M, Bi T, Ding W, Yu C, Jiang C, Yang H, Sun X, Yang M. 2018; OCT4 potentiates radio-resistance and migration activity of rectal cancer cells by improving epithelial-mesenchymal transition in a ZEB1 dependent manner. Biomed Res Int. 2018:3424956. DOI: 10.1155/2018/3424956. PMID: 30112378. PMCID: PMC6077687.
Article
16. Zhao FQ. 2013; Octamer-binding transcription factors: genomics and functions. Front Biosci (Landmark Ed). 18:1051–1071. DOI: 10.2741/4162. PMID: 23747866. PMCID: PMC4349413.
Article
17. Huertas J, MacCarthy CM, Schöler HR, Cojocaru V. 2020; Nucleosomal DNA dynamics mediate Oct4 pioneer factor binding. Biophys J. 118:2280–2296. DOI: 10.1016/j.bpj.2019.12.038. PMID: 32027821. PMCID: PMC7202942.
Article
18. Medvedev SP, Shevchenko AI, Elisaphenko EA, Nesterova TB, Brockdorff N, Zakian SM. 2008; Structure and expression pattern of Oct4 gene are conserved in vole Microtus rossiaemeridionalis. BMC Genomics. 9:162. DOI: 10.1186/1471-2164-9-162. PMID: 18402712. PMCID: PMC2410140.
Article
19. Mohiuddin IS, Wei SJ, Kang MH. 2020; Role of OCT4 in cancer stem-like cells and chemotherapy resistance. Biochim Biophys Acta Mol Basis Dis. 1866:165432. DOI: 10.1016/j.bbadis.2019.03.005. PMID: 30904611. PMCID: PMC6754810.
Article
20. Wu G, Wilson G, Zhou G, Hebbard L, George J, Qiao L. 2015; Oct4 is a reliable marker of liver tumor propagating cells in hepatocellular carcinoma. Discov Med. 20:219–229. PMID: 26562475.
21. Hatefi N, Nouraee N, Parvin M, Ziaee SA, Mowla SJ. 2012; Evaluating the expression of oct4 as a prognostic tumor marker in bladder cancer. Iran J Basic Med Sci. 15:1154–1161. PMID: 23653844. PMCID: PMC3646225.
22. Chen Y, Li XG. 2006; Epigenetic modification in human leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 14:635–638. Chinese.
23. Juárez-Moreno K, Erices R, Beltran AS, Stolzenburg S, Cuello-Fredes M, Owen GI, Qian H, Blancafort P. 2013; Breaking through an epigenetic wall: re-activation of Oct4 by KRAB-containing designer zinc finger transcription factors. Epi-genetics. 8:164–176. DOI: 10.4161/epi.23503. PMID: 23314702. PMCID: PMC3592902.
24. Kristensen DM, Nielsen JE, Kalisz M, Dalgaard MD, Audouze K, Larsen ME, Jacobsen GK, Horn T, Brunak S, Skakkebaek NE, Leffers H. 2010; OCT4 and downstream factors are expressed in human somatic urogenital epithelia and in culture of epididymal spheres. Mol Hum Reprod. 16:835–845. DOI: 10.1093/molehr/gaq008. PMID: 20123703.
Article
25. Zhang HJ, Siu MK, Wong ES, Wong KY, Li AS, Chan KY, Ngan HY, Cheung AN. 2008; Oct4 is epigenetically regulated by methylation in normal placenta and gestational trophoblastic disease. Placenta. 29:549–554. DOI: 10.1016/j.placenta.2008.03.003. PMID: 18440631.
Article
26. Zhao HX, Li Y, Jin HF, Xie L, Liu C, Jiang F, Luo YN, Yin GW, Li Y, Wang J, Li LS, Yao YQ, Wang XH. 2010; Rapid and efficient reprogramming of human amnion-derived cells into pluripotency by three factors OCT4/SOX2/NAN OG. Differentiation. 80:123–129. DOI: 10.1016/j.diff.2010.03.002. PMID: 20510497.
Article
27. Hattori N, Nishino K, Ko YG, Hattori N, Ohgane J, Tanaka S, Shiota K. 2004; Epigenetic control of mouse Oct-4 gene expression in embryonic stem cells and trophoblast stem cells. J Biol Chem. 279:17063–17069. DOI: 10.1074/jbc.M309002200. PMID: 14761969.
Article
28. Liu Q, Chen K, Liu Z, Huang Y, Zhao R, Wei L, Yu X, He J, Liu J, Qi J, Qin Y, Li B. 2017; BORIS up-regulates OCT4 via histone methylation to promote cancer stem cell-like properties in human liver cancer cells. Cancer Lett. 403:165–174. DOI: 10.1016/j.canlet.2017.06.017. PMID: 28645561.
Article
29. Dai X, Liu P, Lau AW, Liu Y, Inuzuka H. 2014; Acetylation-dependent regulation of essential iPS-inducing factors: a regulatory crossroad for pluripotency and tumorigenesis. Cancer Med. 3:1211–1224. DOI: 10.1002/cam4.298. PMID: 25116380. PMCID: PMC4302671.
Article
30. Chai S, Xu X, Wang Y, Zhou Y, Zhang C, Yang Y, Yang Y, Xu H, Xu R, Wang K. 2015; Ca2+/calmodulin-dependent protein kinase IIγ enhances stem-like traits and tumorigenicity of lung cancer cells. Oncotarget. 6:16069–16083. DOI: 10.18632/oncotarget.3866. PMID: 25965829. PMCID: PMC4599257.
Article
31. Tan Y, Xue Y, Song C, Grunstein M. 2013; Acetylated histone H3K56 interacts with Oct4 to promote mouse embryonic stem cell pluripotency. Proc Natl Acad Sci U S A. 110:11493–11498. DOI: 10.1073/pnas.1309914110. PMID: 23798425. PMCID: PMC3710873.
Article
32. Guo L, Zhou Y, Wang S, Wu Y. 2014; Epigenetic changes of mesenchymal stem cells in three-dimensional (3D) sphe-roids. J Cell Mol Med. 18:2009–2019. DOI: 10.1111/jcmm.12336. PMID: 25090911. PMCID: PMC4244016.
Article
33. Abulaiti X, Zhang H, Wang A, Li N, Li Y, Wang C, Du X, Li L. 2017; Phosphorylation of threonine343 is crucial for OCT4 interaction with SOX2 in the maintenance of mouse embryonic stem cell pluripotency. Stem Cell Reports. 9:1630–1641. DOI: 10.1016/j.stemcr.2017.09.001. PMID: 28988986. PMCID: PMC5829306.
Article
34. Deng L, Meng T, Chen L, Wei W, Wang P. 2020; The role of ubiquitination in tumorigenesis and targeted drug disco-very. Signal Transduct Target Ther. 5:11. DOI: 10.1038/s41392-020-0107-0. PMID: 32296023. PMCID: PMC7048745.
Article
35. Liao B, Zhong X, Xu H, Xiao F, Fang Z, Gu J, Chen Y, Zhao Y, Jin Y. 2013; Itch, an E3 ligase of Oct4, is required for embryonic stem cell self-renewal and pluripotency induction. J Cell Physiol. 228:1443–1451. DOI: 10.1002/jcp.24297. PMID: 23255053.
Article
36. Cho Y, Kang HG, Kim SJ, Lee S, Jee S, Ahn SG, Kang MJ, Song JS, Chung JY, Yi EC, Chun KH. 2018; Post-translational modification of OCT4 in breast cancer tumorigene-sis. Cell Death Differ. 25:1781–1795. DOI: 10.1038/s41418-018-0079-6. PMID: 29511337. PMCID: PMC6180041.
Article
37. Villodre ES, Kipper FC, Pereira MB, Lenz G. 2016; Roles of OCT4 in tumorigenesis, cancer therapy resistance and prognosis. Cancer Treat Rev. 51:1–9. DOI: 10.1016/j.ctrv.2016.10.003. PMID: 27788386.
Article
38. Jang H, Kim TW, Yoon S, Choi SY, Kang TW, Kim SY, Kwon YW, Cho EJ, Youn HD. 2012; O-GlcNAc regulates pluripotency and reprogramming by directly acting on core components of the pluripotency network. Cell Stem Cell. 11:62–74. DOI: 10.1016/j.stem.2012.03.001. PMID: 22608532.
Article
39. Lou W, Ding B, Fu P. 2020; Pseudogene-derived lncRNAs and their miRNA sponging mechanism in human cancer. Front Cell Dev Biol. 8:85. DOI: 10.3389/fcell.2020.00085. PMID: 32185172. PMCID: PMC7058547.
Article
40. Chen Q, Zhu C, Jin Y, Si X, Jiao W, He W, Mao W, Li M, Luo G. 2020; Plasma long non-coding RNA RP11-438N5.3 as a novel biomarker for non-small cell lung cancer. Cancer Manag Res. 12:1513–1521. DOI: 10.2147/CMAR.S237024. PMID: 32184656. PMCID: PMC7055527.
41. Zhu Y, Luo C, Korakkandan AA, Fatma YHA, Tao Y, Yi T, Hu S, Liao Q. 2020; Function and regulation annotation of up-regulated long non-coding RNA LINC01234 in gastric cancer. J Clin Lab Anal. 34:e23210. DOI: 10.1002/jcla.23210. PMID: 32011780. PMCID: PMC7246363.
Article
42. Guo QS, Wang P, Huang Y, Guo YB, Zhu MY, Xiong YC. 2019; Regulatory effect of miR-30b on migration and invasion of pancreatic cancer stem cells. Zhonghua Yi Xue Za Zhi. 99:3019–3023. Chinese.
43. Guo JC, Yang YJ, Zheng JF, Zhang JQ, Guo M, Yang X, Jiang XL, Xiang L, Li Y, Ping H, Zhuo L. 2019; Silencing of long noncoding RNA HOXA11-AS inhibits the Wnt signaling pathway via the upregulation of HOXA11 and thereby inhibits the proliferation, invasion, and self-renewal of hepatocellular carcinoma stem cells. Exp Mol Med. 51:1–20. DOI: 10.1038/s12276-019-0328-x. PMCID: PMC6874533. PMID: 31757938.
Article
44. Zhao Y, Zhu Z, Shi S, Wang J, Li N. 2019; Long non-coding RNA MEG3 regulates migration and invasion of lung cancer stem cells via miR-650/SLC34A2 axis. Biomed Phar-macother. 120:109457. DOI: 10.1016/j.biopha.2019.109457. PMID: 31585300.
Article
45. Zhao W, Li W, Jin X, Niu T, Cao Y, Zhou P, Zheng M. 2019; Silencing long non-coding RNA NEAT1 enhances the suppression of cell growth, invasion, and apoptosis of bladder cancer cells under cisplatin chemotherapy. Int J Clin Exp Pathol. 12:549–558. PMID: 31933859. PMCID: PMC6945077.
46. Xu Z, Liu C, Zhao Q, Lü J, Ding X, Luo A, He J, Wang G, Li Y, Cai Z, Wang Z, Liu J, Liu S, Li W, Yu Z. 2020; Long non-coding RNA CCAT2 promotes oncogenesis in triple-negative breast cancer by regulating stemness of cancer cells. Pharmacol Res. 152:104628. DOI: 10.1016/j.phrs.2020.104628. PMID: 31904506.
Article
47. Tang D, Yang Z, Long F, Luo L, Yang B, Zhu R, Sang X, Cao G, Wang K. 2019; Long noncoding RNA MALAT1 mediates stem cell-like properties in human colorectal cancer cells by regulating miR-20b-5p/Oct4 axis. J Cell Physiol. 234:20816–20828. DOI: 10.1002/jcp.28687. PMID: 31012108.
Article
48. Fan H, Liu G, Zhao C, Li X, Yang X. 2017; Transcription factor Oct4 promotes osteosarcoma by regulating lncRNA AK055 347. Oncol Lett. 13:396–402. DOI: 10.3892/ol.2016.5400. PMID: 28123573. PMCID: PMC5244871.
Article
49. Han Q, Xu L, Lin W, Yao X, Jiang M, Zhou R, Sun X, Zhao L. 2019; Long noncoding RNA CRCMSL suppresses tumor invasive and metastasis in colorectal carcinoma through nucleocytoplasmic shuttling of HMGB2. Oncogene. 38:3019–3032. DOI: 10.1038/s41388-018-0614-4. PMID: 30575817.
Article
50. Bauderlique-Le Roy H, Vennin C, Brocqueville G, Spruyt N, Adriaenssens E, Bourette RP. 2015; Enrichment of human stem-like prostate cells with s-SHIP promoter activity uncovers a role in stemness for the long noncoding RNA H19. Stem Cells Dev. 24:1252–1262. DOI: 10.1089/scd.2014.0386. PMID: 25567531. PMCID: PMC4425227.
Article
51. Zimmerman DL, Boddy CS, Schoenherr CS. 2013; Oct4/Sox2 binding sites contribute to maintaining hypomethylation of the maternal igf2/h19 imprinting control region. PLoS One. 8:e81962. DOI: 10.1371/journal.pone.0081962. PMID: 24324735. PMCID: PMC3855764.
Article
52. Chen S, Zhu J, Wang F, Guan Z, Ge Y, Yang X, Cai J. 2017; LncRNAs and their role in cancer stem cells. Oncotarget. 8:110685–110692. DOI: 10.18632/oncotarget.22161. PMID: 29299179. PMCID: PMC5746414.
Article
53. Wang Y, Xu Z, Jiang J, Xu C, Kang J, Xiao L, Wu M, Xiong J, Guo X, Liu H. 2013; Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev Cell. 25:69–80. DOI: 10.1016/j.devcel.2013.03.002. PMID: 23541921.
Article
54. Sandmaier SE, Telugu BP. 2015; MicroRNA-mediated reprogra-mming of somatic cells into induced pluripotent stem cells. Methods Mol Biol. 1330:29–36. DOI: 10.1007/978-1-4939-2848-4_3. PMID: 26621586.
Article
55. Bräutigam C, Raggioli A, Winter J. 2013; The Wnt/β-catenin pathway regulates the expression of the miR-302 cluster in mouse ESCs and P19 cells. PLoS One. 8:e75315. DOI: 10.1371/journal.pone.0075315. PMID: 24040406. PMCID: PMC3769259.
56. Hu S, Wilson KD, Ghosh Z, Han L, Wang Y, Lan F, Ransohoff KJ, Burridge P, Wu JC. 2013; MicroRNA-302 increases reprogramming efficiency via repression of NR2F2. Stem Cells. 31:259–268. DOI: 10.1002/stem.1278. PMID: 23136034. PMCID: PMC3572288.
Article
57. Wu Y, Liu S, Xin H, Jiang J, Younglai E, Sun S, Wang H. 2011; Up-regulation of microRNA-145 promotes differentia-tion by repressing OCT4 in human endometrial adenocar-cinoma cells. Cancer. 117:3989–3998. DOI: 10.1002/cncr.25944. PMID: 21365617.
Article
58. Yang YP, Chien Y, Chiou GY, Cherng JY, Wang ML, Lo WL, Chang YL, Huang PI, Chen YW, Shih YH, Chen MT, Chiou SH. 2012; Inhibition of cancer stem cell-like properties and reduced chemoradioresistance of glioblastoma using microRNA145 with cationic polyurethane-short branch PEI. Biomaterials. 33:1462–1476. DOI: 10.1016/j.biomaterials.2011.10.071. PMID: 22098779.
Article
59. Jerabek S, Merino F, Schöler HR, Cojocaru V. 2014; OCT4: dynamic DNA binding pioneers stem cell pluripotency. Biochim Biophys Acta. 1839:138–154. DOI: 10.1016/j.bbagrm.2013.10.001. PMID: 24145198.
Article
60. Gao Y, Zhang Z, Li K, Gong L, Yang Q, Huang X, Hong C, Ding M, Yang H. 2017; Linc-DYNC2H1-4 promotes EMT and CSC phenotypes by acting as a sponge of miR-145 in pancreatic cancer cells. Cell Death Dis. 8:e2924. DOI: 10.1038/cddis.2017.311. PMID: 28703793. PMCID: PMC5550858.
Article
61. Bai M, Yuan M, Liao H, Chen J, Xie B, Yan D, Xi X, Xu X, Zhang Z, Feng Y. 2015; OCT4 pseudogene 5 upregulates OCT4 expression to promote proliferation by competing with miR-145 in endometrial carcinoma. Oncol Rep. 33:1745–1752. DOI: 10.3892/or.2015.3763. PMID: 25634023.
Article
62. Wang L, Guo ZY, Zhang R, Xin B, Chen R, Zhao J, Wang T, Wen WH, Jia LT, Yao LB, Yang AG. 2013; Pseudogene OCT4-pg4 functions as a natural micro RNA sponge to regulate OCT4 expression by competing for miR-145 in hepatocellular carcinoma. Carcinogenesis. 34:1773–1781. DOI: 10.1093/carcin/bgt139. PMID: 23615404.
Article
63. Liu T, Chi H, Chen J, Chen C, Huang Y, Xi H, Xue J, Si Y. 2017; Curcumin suppresses proliferation and in vitro invasion of human prostate cancer stem cells by ceRNA effect of miR-145 and lncRNA-ROR. Gene. 631:29–38. DOI: 10.1016/j.gene.2017.08.008. PMID: 28843521.
Article
64. Chai S, Ng KY, Tong M, Lau EY, Lee TK, Chan KW, Yuan YF, Cheung TT, Cheung ST, Wang XQ, Wong N, Lo CM, Man K, Guan XY, Ma S. 2016; Octamer 4/microRNA-1246 signaling axis drives Wnt/β-catenin activation in liver cancer stem cells. Hepatology. 64:2062–2076. DOI: 10.1002/hep.28821. PMID: 27639189.
Article
65. Kim JY, Kim JC, Lee JY, Park MJ. 2018; Oct4 suppresses IR-induced premature senescence in breast cancer cells through STAT3- and NF-κB-mediated IL‑24 production. Int J Oncol. 53:47–58. DOI: 10.3892/ijo.2018.4391. PMID: 29749438. PMCID: PMC5958730.
66. Lo WL, Chien Y, Chiou GY, Tseng LM, Hsu HS, Chang YL, Lu KH, Chien CS, Wang ML, Chen YW, Huang PI, Hu FW, Yu CC, Chu PY, Chiou SH. 2012; Nuclear localization signal-enhanced RNA interference of EZH2 and Oct4 in the eradication of head and neck squamous cell carcinoma-derived cancer stem cells. Biomaterials. 33:3693–3709. DOI: 10.1016/j.biomaterials.2012.01.016. PMID: 22361100.
Article
67. Huang JQ. 2011; Small interfering RNA-mediated OCT4 gene silencing inhibits the proliferation and induces apoptosis of pancreatic cancer cell line PANC1. Nan Fang Yi Ke Da Xue Xue Bao. 31:860–863. Chinese.
68. Huang ZJ, You J, Luo WY, Chen BS, Feng QZ, Wu BL, Jiang L, Luo Q. 2015; Reduced tumorigenicity and drug resistance through the downregulation of octamer-binding protein 4 and Nanog transcriptional factor expression in human breast stem cells. Mol Med Rep. 11:1647–1654. DOI: 10.3892/mmr.2014.2972. PMID: 25405855. PMCID: PMC4270319.
Article
69. Mydlikova Z, Gursky J, Pirsel M. 2010; Transcription factor IIH-the protein complex with multiple functions. Neoplasma. 57:287–290. DOI: 10.4149/neo_2010_04_287. PMID: 20429618.
70. Whitton B, Okamoto H, Packham G, Crabb SJ. 2018; Vacuolar ATPase as a potential therapeutic target and mediator of treatment resistance in cancer. Cancer Med. 7:3800–3811. DOI: 10.1002/cam4.1594. PMID: 29926527. PMCID: PMC6089187.
Article
71. Bourguignon LYW, Earle C, Shiina M. 2017; Activation of matrix hyaluronan-mediated CD44 signaling, epigenetic regulation and chemoresistance in head and neck cancer stem cells. Int J Mol Sci. 18:1849. DOI: 10.3390/ijms18091849. PMID: 28837080. PMCID: PMC5618498.
Article
72. Fu TY, Hsieh IC, Cheng JT, Tsai MH, Hou YY, Lee JH, Liou HH, Huang SF, Chen HC, Yen LM, Tseng HH, Ger LP. 2016; Association of OCT4, SOX2, and NANOG expression with oral squamous cell carcinoma progression. J Oral Pathol Med. 45:89–95. DOI: 10.1111/jop.12335. PMID: 26211876.
Article
73. Pan X, Cang X, Dan S, Li J, Cheng J, Kang B, Duan X, Shen B, Wang YJ. 2016; Site-specific disruption of the Oct4/Sox2 protein interaction reveals coordinated mesendodermal differentiation and the epithelial-mesenchymal transition. J Biol Chem. 291:18353–18369. DOI: 10.1074/jbc.M116.745414. PMID: 27369080. PMCID: PMC5000082.
Article
74. Herreros-Villanueva M, Bujanda L, Billadeau DD, Zhang JS. 2014; Embryonic stem cell factors and pancreatic cancer. World J Gastroenterol. 20:2247–2254. DOI: 10.3748/wjg.v20.i9.2247. PMID: 24605024. PMCID: PMC3942830.
Article
75. Liang Y, Huimei Hong F, Ganesan P, Jiang S, Jauch R, Stanton LW, Kolatkar PR. 2012; Structural analysis and dimerization profile of the SCAN domain of the pluripotency factor Zfp206. Nucleic Acids Res. 40:8721–8732. DOI: 10.1093/nar/gks611. PMID: 22735705. PMCID: PMC3458555.
Article
76. Zhao B, Zheng X, Tan X, Ke K, Wang F, Wang Y, Xing X, Zhang C, Hu P, Lan S, Li Q, Huang A, Liu X. 2020; Ku80 negatively regulates the expression of OCT4 via competitive binding to SALL4 and promoting lysosomal degradation of OCT4. Int J Biochem Cell Biol. 118:105664. DOI: 10.1016/j.biocel.2019.105664. PMID: 31816404.
Article
77. Zhang X, Yuan X, Zhu W, Qian H, Xu W. 2015; SALL4: an emerging cancer biomarker and target. Cancer Lett. 357:55–62. DOI: 10.1016/j.canlet.2014.11.037. PMID: 25444934.
Article
78. Tanimura N, Saito M, Ebisuya M, Nishida E, Ishikawa F. 2013; Stemness-related factor Sall4 interacts with transcription factors Oct-3/4 and Sox2 and occupies Oct-Sox elements in mouse embryonic stem cells. J Biol Chem. 288:5027–5038. DOI: 10.1074/jbc.M112.411173. PMID: 23269686. PMCID: PMC3576104.
Article
79. Maiuthed A, Bhummaphan N, Luanpitpong S, Mutirangura A, Aporntewan C, Meeprasert A, Rungrotmongkol T, Rojanasakul Y, Chanvorachote P. 2018; Nitric oxide promotes cancer cell dedifferentiation by disrupting an Oct4:caveolin-1 complex: a new regulatory mechanism for cancer stem cell formation. J Biol Chem. 293:13534–13552. DOI: 10.1074/jbc.RA117.000287. PMID: 29986880. PMCID: PMC6120192.
Article
80. Yoon HJ, Kim DH, Kim SJ, Jang JH, Surh YJ. 2019; Src-mediated phosphorylation, ubiquitination and degradation of Caveolin-1 promotes breast cancer cell stemness. Cancer Lett. 449:8–19. DOI: 10.1016/j.canlet.2019.01.021. PMID: 30673589.
Article
81. Yongsanguanchai N, Pongrakhananon V, Mutirangura A, Rojanasakul Y, Chanvorachote P. 2015; Nitric oxide induces cancer stem cell-like phenotypes in human lung cancer cells. Am J Physiol Cell Physiol. 308:C89–C100. DOI: 10.1152/ajpcell.00187.2014. PMID: 25411331.
Article
82. Yang YC, Chien MH, Liu HY, Chang YC, Chen CK, Lee WJ, Kuo TC, Hsiao M, Hua KT, Cheng TY. 2018; Nuclear translocation of PKM2/AMPK complex sustains cancer stem cell populations under glucose restriction stress. Cancer Lett. 421:28–40. DOI: 10.1016/j.canlet.2018.01.075. PMID: 29408265.
Article
83. Giannoni E, Taddei ML, Morandi A, Comito G, Calvani M, Bianchini F, Richichi B, Raugei G, Wong N, Tang D, Chiarugi P. 2015; Targeting stromal-induced pyruvate kinase M2 nuclear translocation impairs oxphos and prostate cancer metastatic spread. Oncotarget. 6:24061–24074. DOI: 10.18632/oncotarget.4448. PMID: 26183399. PMCID: PMC4695170.
Article
84. Lei I, Tian S, Chen V, Zhao Y, Wang Z. 2020; SWI/SNF component BAF250a coordinates OCT4 and WNT signaling pathway to control cardiac lineage differentiation. Front Cell Dev Biol. 7:358. DOI: 10.3389/fcell.2019.00358. PMID: 32039194. PMCID: PMC6987383.
Article
85. Zhu P, Wang Y, He L, Huang G, Du Y, Zhang G, Yan X, Xia P, Ye B, Wang S, Hao L, Wu J, Fan Z. 2015; ZIC2-dependent OCT4 activation drives self-renewal of human liver cancer stem cells. J Clin Invest. 125:3795–3808. DOI: 10.1172/JCI81979. PMID: 26426078. PMCID: PMC4607118.
Article
86. Tsai PH, Chien Y, Wang ML, Hsu CH, Laurent B, Chou SJ, Chang WC, Chien CS, Li HY, Lee HC, Huo TI, Hung JH, Chen CH, Chiou SH. 2019; Ash2l interacts with Oct4-stemness circuitry to promote super-enhancer-driven pluripotency network. Nucleic Acids Res. 47:10115–10133. DOI: 10.1093/nar/gkz801. PMID: 31555818. PMCID: PMC6821267.
Article
87. Chen D. 2015; Tumor formation and drug resistance properties of human glioblastoma side population cells. Mol Med Rep. 11:4309–4314. DOI: 10.3892/mmr.2015.3279. PMID: 25633829.
Article
88. Blum W, Pecze L, Felley-Bosco E, Wu L, de Perrot M, Schwaller B. 2017; Stem cell factor-based identification and functional properties of in vitro-selected subpopulations of malignant mesothelioma cells. Stem Cell Reports. 8:1005–1017. DOI: 10.1016/j.stemcr.2017.02.005. PMID: 28285878. PMCID: PMC5390099.
Article
89. Lee S, Wottrich S, Bonavida B. 2017; Crosstalks between Raf-kinase inhibitor protein and cancer stem cell transcription factors (Oct4, KLF4, Sox2, Nanog). Tumour Biol. 39:1010428317692253. DOI: 10.1177/1010428317692253. PMID: 28378634.
Article
90. Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F, Cui H. 2020; Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 5:8. DOI: 10.1038/s41392-020-0110-5. PMID: 32296030. PMCID: PMC7005297.
Article
91. Rios-Fuller TJ, Ortiz-Soto G, Lacourt-Ventura M, Maldonado-Martinez G, Cubano LA, Schneider RJ, Martinez-Montemayor MM. 2018; Ganoderma lucidum extract (GLE) impairs breast cancer stem cells by targeting the STAT3 pathway. Oncotarget. 9:35907–35921. DOI: 10.18632/oncotarget.26294. PMID: 30542507. PMCID: PMC6267592.
Article
92. Wang H, Deng J, Ren HY, Jia P, Zhang W, Li MQ, Li SW, Zhou QH. 2017; STAT3 influences the characteristics of stem cells in cervical carcinoma. Oncol Lett. 14:2131–2136. DOI: 10.3892/ol.2017.6454. PMID: 28781654. PMCID: PMC5530137.
Article
93. Wang H, Cai HB, Chen LL, Zhao WJ, Li P, Wang ZQ, Li Z. 2015; STAT3 correlates with stem cell-related transcription factors in cervical cancer. J Huazhong Univ Sci Technolog Med Sci. 35:891–897. DOI: 10.1007/s11596-015-1524-0. PMID: 26670442.
Article
94. Yang CM, Chiba T, Groner B. 2012; Expression of reprogramming factors in breast cancer cell lines and the regulation by activated Stat3. Horm Mol Biol Clin Investig. 10:241–248. DOI: 10.1515/hmbci-2012-0003. PMID: 25436680.
Article
95. Yin X, Zhang BH, Zheng SS, Gao DM, Qiu SJ, Wu WZ, Ren ZG. 2015; Coexpression of gene Oct4 and Nanog initiates stem cell characteristics in hepatocellular carcinoma and promotes epithelial-mesenchymal transition through activation of Stat3/Snail signaling. J Hematol Oncol. 8:23. DOI: 10.1186/s13045-015-0119-3. PMID: 25879771. PMCID: PMC4377043.
Article
96. Kim SY, Kang JW, Song X, Kim BK, Yoo YD, Kwon YT, Lee YJ. 2013; Role of the IL-6-JAK1-STAT3-Oct-4 pathway in the conversion of non-stem cancer cells into cancer stem-like cells. Cell Signal. 25:961–969. DOI: 10.1016/j.cellsig.2013.01.007. PMID: 23333246. PMCID: PMC3595341.
Article
97. Do DV, Ueda J, Messerschmidt DM, Lorthongpanich C, Zhou Y, Feng B, Guo G, Lin PJ, Hossain MZ, Zhang W, Moh A, Wu Q, Robson P, Ng HH, Poellinger L, Knowles BB, Solter D, Fu XY. 2013; A genetic and developmental pathway from STAT3 to the OCT4-NANOG circuit is essential for maintenance of ICM lineages in vivo. Genes Dev. 27:1378–1390. DOI: 10.1101/gad.221176.113. PMID: 23788624. PMCID: PMC3701193.
Article
98. Zhao H, Guo Y, Li S, Han R, Ying J, Zhu H, Wang Y, Yin L, Han Y, Sun L, Wang Z, Lin Q, Bi X, Jiao Y, Jia H, Zhao J, Huang Z, Li Z, Zhou J, Song W, Meng K, Cai J. 2015; A novel anti-cancer agent Icaritin suppresses hepatocellular carcinoma initiation and malignant growth through the IL-6/Jak2/Stat3 pathway. Oncotarget. 6:31927–31943. DOI: 10.18632/oncotarget.5578. PMID: 26376676. PMCID: PMC4741651.
Article
99. Yu X, Zhang F, Mao J, Lu Y, Li J, Ma W, Fan S, Zhang C, Li Q, Wang B, Song B, Li L. 2017; Protein tyrosine phosphatase receptor-type δ acts as a negative regulator suppressing breast cancer. Oncotarget. 8:98798–98811. DOI: 10.18632/oncotarget.22000. PMID: 29228728. PMCID: PMC5716768.
100. Chen Y, Shao Z, Jiang E, Zhou X, Wang L, Wang H, Luo X, Chen Q, Liu K, Shang Z. 2020; CCL21/CCR7 interaction promotes EMT and enhances the stemness of OSCC via a JAK2/STAT3 signaling pathway. J Cell Physiol. 235:5995–6009. DOI: 10.1002/jcp.29525. PMID: 32017846.
Article
101. Liu HW, Lee PM, Bamodu OA, Su YK, Fong IH, Yeh CT, Chien MH, Kan IH, Lin CM. 2019; Enhanced hsa-miR-181d/p-STAT3 and hsa-miR-181d/p-STAT5A ratios mediate the anticancer effect of garcinol in STAT3/5A-addicted glio-blastoma. Cancers (Basel). 11:1888. DOI: 10.3390/cancers11121888. PMID: 31783691. PMCID: PMC6966688.
Article
102. Wang L, Jiang Z, Huang D, Duan J, Huang C, Sullivan S, Vali K, Yin Y, Zhang M, Wegrzyn J, Tian XC, Tang Y. 2018; JAK/STAT3 regulated global gene expression dynamics during late-stage reprogramming process. BMC Genomics. 19:183. DOI: 10.1186/s12864-018-4507-2. PMID: 29510661. PMCID: PMC5840728.
Article
103. Tang Y, Luo Y, Jiang Z, Ma Y, Lin CJ, Kim C, Carter MG, Amano T, Park J, Kish S, Tian XC. 2012; Jak/Stat3 signaling promotes somatic cell reprogramming by epigenetic regulation. Stem Cells. 30:2645–2656. DOI: 10.1002/stem.1225. PMID: 22968989.
Article
104. Lin CS, Bamodu OA, Kuo KT, Huang CM, Liu SC, Wang CH, Tzeng YM, Chao TY, Yeh CT. 2018; Investigation of ovatodiolide, a macrocyclic diterpenoid, as a potential inhibitor of oral cancer stem-like cells properties via the inhibition of the JAK2/STAT3/JARID1B signal circuit. Phytomedicine. 46:93–103. DOI: 10.1016/j.phymed.2018.04.016. PMID: 30097127.
Article
105. Su C. 2016; Survivin in survival of hepatocellular carcinoma. Cancer Lett. 379:184–190. DOI: 10.1016/j.canlet.2015.06.016. PMID: 26118774.
Article
106. Wang G, Zhou H, Gu Z, Gao Q, Shen G. 2018; Oct4 promotes cancer cell proliferation and migration and leads to poor prognosis associated with the survivin/STAT3 pathway in hepatocellular carcinoma. Oncol Rep. 40:979–987. DOI: 10.3892/or.2018.6491. PMID: 29901157.
Article
107. Martinez E, Vazquez N, Lopez A, Fanniel V, Sanchez L, Marks R, Hinojosa L, Cuello V, Cuevas M, Rodriguez A, Tomson C, Salinas A, Abad M, Holguin M, Garza N, Arenas A, Abraham K, Maldonado L, Rojas V, Basdeo A, Schuenzel E, Persans M, Innis-Whitehouse W, Keniry M. 2020; The PI3K pathway impacts stem gene expression in a set of glioblastoma cell lines. J Cancer Res Clin Oncol. 146:593–604. DOI: 10.1007/s00432-020-03133-w. PMID: 32030510.
Article
108. Weidinger C, Krause K, Mueller K, Klagge A, Fuhrer D. 2011; FOXO3 is inhibited by oncogenic PI3K/Akt signaling but can be reactivated by the NSAID sulindac sulfide. J Clin Endocrinol Metab. 96:E1361–E1371. DOI: 10.1210/jc.2010-2453. PMID: 21752881.
Article
109. Gomes AR, Zhao F, Lam EW. 2013; Role and regulation of the forkhead transcription factors FOXO3a and FOXM1 in carcinogenesis and drug resistance. Chin J Cancer. 32:365–370. DOI: 10.5732/cjc.012.10277. PMID: 23706767. PMCID: PMC3845605.
Article
110. Bhummaphan N, Chanvorachote P. 2015; Gigantol suppresses cancer stem cell-like phenotypes in lung cancer cells. Evid Based Complement Alternat Med. 2015:836564. DOI: 10.1155/2015/836564. PMID: 26339272. PMCID: PMC4539074.
Article
111. Chen B, Xue Z, Yang G, Shi B, Yang B, Yan Y, Wang X, Han D, Huang Y, Dong W. 2013; Akt-signal integration is involved in the differentiation of embryonal carcinoma cells. PLoS One. 8:e64877. DOI: 10.1371/journal.pone.0064877. PMID: 23762260. PMCID: PMC3675137.
Article
112. Li X, Meng Y, Xie C, Zhu J, Wang X, Li Y, Geng S, Wu J, Zhong C, Li M. 2018; Diallyl Trisulfide inhibits breast cancer stem cells via suppression of Wnt/β-catenin pathway. J Cell Biochem. 119:4134–4141. DOI: 10.1002/jcb.26613. PMID: 29243835.
Article
113. Chen SM, Lee MS, Chang CY, Lin SZ, Cheng EH, Liu YH, Pan HC, Lee HC, Su HL. 2015; Prerequisite OCT4 maintenance potentiates the neural induction of differentiating human embryonic stem cells and induced pluripotent stem cells. Cell Transplant. 24:829–844. DOI: 10.3727/096368913X675179. PMID: 24256943.
Article
114. Guo Y, Li B, Yan X, Shen X, Ma J, Liu S, Zhang D. 2020; Bisphenol A and polychlorinated biphenyls enhance the cancer stem cell properties of human ovarian cancer cells by activating the WNT signaling pathway. Chemosphere. 246:125775. DOI: 10.1016/j.chemosphere.2019.125775. PMID: 31918092.
Article
115. Simandi Z, Horvath A, Wright LC, Cuaranta-Monroy I, De Luca I, Karolyi K, Sauer S, Deleuze JF, Gudas LJ, Cowley SM, Nagy L. 2016; OCT4 acts as an integrator of pluripotency and signal-induced differentiation. Mol Cell. 63:647–661. DOI: 10.1016/j.molcel.2016.06.039. PMID: 27499297.
Article
116. Davidson KC, Adams AM, Goodson JM, McDonald CE, Potter JC, Berndt JD, Biechele TL, Taylor RJ, Moon RT. 2012; Wnt/β-catenin signaling promotes differentiation, not self-renewal, of human embryonic stem cells and is repressed by Oct4. Proc Natl Acad Sci U S A. 109:4485–4490. DOI: 10.1073/pnas.1118777109. PMID: 22392999. PMCID: PMC3311359.
Article
117. Wang Y, Zhong Y, Hou T, Liao J, Zhang C, Sun C, Wang G. 2019; PM2.5 induces EMT and promotes CSC properties by activating Notch pathway in vivo and vitro. Ecotoxicol Environ Saf. 178:159–167. DOI: 10.1016/j.ecoenv.2019.03.086. PMID: 31002970.
Article
118. Zhou ZC, Dong QG, Fu DL, Gong YY, Ni QX. 2013; Characteristics of Notch2+ pancreatic cancer stem-like cells and the relationship with centroacinar cells. Cell Biol Int. 37:805–811. DOI: 10.1002/cbin.10102. PMID: 23536545.
Article
119. Jung N, Kwon HJ, Jung HJ. 2018; Downregulation of mitochondrial UQCRB inhibits cancer stem cell-like properties in glioblastoma. Int J Oncol. 52:241–251. DOI: 10.3892/ijo.2017.4191. PMCID: PMC5505016. PMID: 29115404.
Article
120. Au HK, Chang JH, Wu YC, Kuo YC, Chen YH, Lee WC, Chang TS, Lan PC, Kuo HC, Lee KL, Lee MT, Tzeng CR, Huang YH. 2015; TGF-βI regulates cell migration through pluripotent transcription factor OCT4 in endometriosis. PLoS One. 10:e0145256. DOI: 10.1371/journal.pone.0145256. PMID: 26675296. PMCID: PMC4682958.
121. Yuan F, Zhou W, Zou C, Zhang Z, Hu H, Dai Z, Zhang Y. 2010; Expression of Oct4 in HCC and modulation to wnt/β-catenin and TGF-β signal pathways. Mol Cell Biochem. 343:155–162. DOI: 10.1007/s11010-010-0509-3. PMID: 20549546.
Article
122. Liang K, Zhou G, Zhang Q, Li J, Zhang C. 2014; Expression of hippo pathway in colorectal cancer. Saudi J Gastroenterol. 20:188–194. DOI: 10.4103/1319-3767.133025. PMID: 24976283. PMCID: PMC4067916.
Article
123. Haghighi F, Dahlmann J, Nakhaei-Rad S, Lang A, Kutschka I, Zenker M, Kensah G, Piekorz RP, Ahmadian MR. 2018; bFGF-mediated pluripotency maintenance in human induced pluripotent stem cells is associated with NRAS-MAPK signaling. Cell Commun Signal. 16:96. DOI: 10.1186/s12964-018-0307-1. PMID: 30518391. PMCID: PMC6282345.
Article
124. Jung JS, Jee MK, Cho HT, Choi JI, Im YB, Kwon OH, Kang SK. 2013; MBD6 is a direct target of Oct4 and controls the stemness and differentiation of adipose tissue-derived stem cells. Cell Mol Life Sci. 70:711–728. DOI: 10.1007/s00018-012-1157-4. PMID: 23052207.
Article
125. Jang JH, Jung JS, Im YB, Kang KS, Choi JI, Kang SK. 2012; Crucial role of nuclear Ago2 for hUCB-MSCs differentiation and self-renewal via stemness control. Antioxid Redox Signal. 16:95–111. DOI: 10.1089/ars.2011.3975. PMID: 21902595.
Article
126. Bie Q, Zhang B, Sun C, Ji X, Barnie PA, Qi C, Peng J, Zhang D, Zheng D, Su Z, Wang S, Xu H. 2017; IL-17B activated mesenchymal stem cells enhance proliferation and migration of gastric cancer cells. Oncotarget. 8:18914–18923. DOI: 10.18632/oncotarget.14835. PMID: 28145881. PMCID: PMC5386657.
Article
127. Wang D, Xiang T, Zhao Z, Lin K, Yin P, Jiang L, Liang Z, Zhu B. 2016; Autocrine interleukin-23 promotes self-renewal of CD133+ ovarian cancer stem-like cells. Oncotarget. 7:76006–76020. DOI: 10.18632/oncotarget.12579. PMID: 27738346. PMCID: PMC5342794.
Article
128. Kim KW, Kim JY, Qiao J, Clark RA, Powers CM, Correa H, Chung DH. 2019; Dual-Targeting AKT2 and ERK in cancer stem-like cells in neuroblastoma. Oncotarget. 10:5645–5659. DOI: 10.18632/oncotarget.27210. PMID: 31608140. PMCID: PMC6771463.
Article
129. Tang J, Li L, Huang W, Sui C, Yang Y, Lin X, Hou G, Chen X, Fu J, Yuan S, Li S, Wen W, Tang S, Cao D, Wu M, Chen L, Wang H. 2015; MiR-429 increases the metastatic capability of HCC via regulating classic Wnt pathway rather than epithelial-mesenchymal transition. Cancer Lett. 364:33–43. DOI: 10.1016/j.canlet.2015.04.023. PMID: 25931210.
Article
130. Li L, Tang J, Zhang B, Yang W, LiuGao M, Wang R, Tan Y, Fan J, Chang Y, Fu J, Jiang F, Chen C, Yang Y, Gu J, Wu D, Guo L, Cao D, Li H, Cao G, Wu M, Zhang MQ, Chen L, Wang H. 2015; Epigenetic modification of MiR-429 promotes liver tumour-initiating cell properties by targeting Rb binding protein 4. Gut. 64:156–167. DOI: 10.1136/gutjnl-2013-305715. PMID: 24572141.
Article
131. Shigeishi H, Biddle A, Gammon L, Emich H, Rodini CO, Gemenetzidis E, Fazil B, Sugiyama M, Kamata N, Mackenzie IC. 2013; Maintenance of stem cell self-renewal in head and neck cancers requires actions of GSK3β influenced by CD44 and RHAMM. Stem Cells. 31:2073–2083. DOI: 10.1002/stem.1418. PMID: 23649588.
Article
132. Hu J, Qin K, Zhang Y, Gong J, Li N, Lv D, Xiang R, Tan X. 2011; Downregulation of transcription factor Oct4 induces an epithelial-to-mesenchymal transition via enhancement of Ca2+ influx in breast cancer cells. Biochem Biophys Res Commun. 411:786–791. DOI: 10.1016/j.bbrc.2011.07.025. PMID: 21798248.
Article
133. Xun J, Wang D, Shen L, Gong J, Gao R, Du L, Chang A, Song X, Xiang R, Tan X. 2017; JMJD3 suppresses stem cell-like characteristics in breast cancer cells by downregulation of Oct4 independently of its demethylase activity. Oncotarget. 8:21918–21929. DOI: 10.18632/oncotarget.15747. PMID: 28423536. PMCID: PMC5400634.
Article
134. Chen T, Liu K, Xu J, Zhan T, Liu M, Li L, Yang Z, Yuan S, Zou W, Lin G, Carson DA, Wu CCN, Wang X. 2020; Synthetic and immunological studies on the OCT4 immunodominant motif antigen-based anti-cancer vaccine. Cancer Biol Med. 17:132–141. DOI: 10.20892/j.issn.2095-3941.2019.0224. PMID: 32296581. PMCID: PMC7142840.
Article
135. Yan Y, Liu F, Han L, Zhao L, Chen J, Olopade OI, He M, Wei M. 2018; HIF-2α promotes conversion to a stem cell phenotype and induces chemoresistance in breast cancer cells by activating Wnt and Notch pathways. J Exp Clin Cancer Res. 37:256. DOI: 10.1186/s13046-018-0925-x. PMID: 30340507. PMCID: PMC6194720.
136. Asadi MH, Khalifeh K, Mowla SJ. 2016; OCT4 spliced variants are highly expressed in brain cancer tissues and inhibition of OCT4B1 causes G2/M arrest in brain cancer cells. J Neurooncol. 130:455–463. DOI: 10.1007/s11060-016-2255-1. PMID: 27585657.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr