1. Garani G, Atay CE. Encountering incomplete temporal information in clinical data warehouses. Int J Appl Res Public Health Manag. 2020; 5(1):32–48.
Article
2. Kallmeyer V, Venkat K. Beyond e-health: health and information technology converge. Siliconindia. 2002; 6(4):42.
3. The Global Cancer Observatory [Internet]. Lyon, France: International Agency for Research on Cancer;c2020. [cited at 2020 Sep 10]. Available from:
https://gco.iarc.fr/
.
4. Ferlay J, Parkin DM, Steliarova-Foucher E. Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer. 2010; 46(4):765–81.
Article
5. Miele S, Shockley R. Analytics: the real-world use of big data. Somers (NY): IBM Global Business Services;2013.
6. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014; 64(1):9–29.
Article
7. Atay CE, Garani G. Maintaining dimension’s history in data warehouses effectively. Int J Data Wareh Min. 2019; 15(3):46–62.
Article
8. Arous EJ, McDade TP, Smith JK, Ng SC, Sullivan ME, Zottola RJ, et al. Electronic medical record: research tool for pancreatic cancer? J Surg Res. 2014; 187(2):466–70.
Article
9. Bellaachia A, Guven E. Predicting breast cancer survivability using data mining techniques. In : Proceedings of the 6th SIAM International Conference on Data Mining: Scientific Data Mining; 2006 Apr 20–22; Bethesda, MD.
Article
10. Gorgionne GA, Gangopadhyah A, Adya M. A decision technology system to advance the diagnosis and treatment of breast cancer. Managing healthcare information systems with web-enabled technologies. Hershey (PA): IGI Global;2000. p. 141–50.
Article
11. Krishnaiah V, Narsimha G, Chandra NS. Diagnosis of lung cancer prediction system using data mining classification techniques. Int J Comput Sci Inf Technol. 2013; 4(1):39–45.
12. Wah TY, Sim OS. Development of a data warehouse for lymphoma cancer diagnosis and treatment decision support. WSEAS Trans Inf Sci Appl. 2009; 6(3):530–43.
13. Zubi ZS, Saad RA. Improves treatment programs of lung cancer using data mining techniques. J Softw Eng Appl. 2014; 7(2):42749.
Article
14. Abidi SS, Abidi SR. A case for supplementing evidence based medicine with inductive clinical knowledge: towards a technology-enriched integrated clinical evidence system. In : Proceedings 14th IEEE Symposium on Computer-Based Medical Systems (CBMS); 2001 Jul 26–27; Bethesda, MD. p. 5–10.
Article
15. Wu R, Peters W, Morgan MW. The next generation of clinical decision support: linking evidence to best practice. J Healthc Inf Manag. 2002; 16(4):50–5.
16. Sheta OE, Eldeen AN. Evaluating a healthcare data warehouse for cancer diseases. IRACST Int J Comput Sci Inf Technol Secur. 2013; 3(3):237–41.
17. Ramachandran P, Girija N, Bhuvaneswari T. Early detection and prevention of cancer using data mining techniques. Int J Comput Appl. 2014; 97(13):48–53.
Article
18. Inmon WH. Building the data warehouse. 2nd ed. New York (NY): John Wiley & Sons;1996.
19. Kimball R, Ross M. The data warehouse toolkit. 2nd ed. New York (NY): John Wiley & Sons;2002.