1. Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med. 2019; 380(14):1347–1358. PMID:
30943338.
Article
2. Shimizu H, Nakayama KI. Artificial intelligence in oncology. Cancer Sci. 2020; 111(5):1452–1460. PMID:
32133724.
Article
3. Obermeyer Z, Emanuel EJ. Predicting the future - big data, machine learning, and clinical medicine. N Engl J Med. 2016; 375(13):1216–1219. PMID:
27682033.
Article
4. Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017; 2(4):230–243. PMID:
29507784.
Article
5. Cruz JA, Wishart DS. Applications of machine learning in cancer prediction and prognosis. Cancer Inform. 2007; 2:59–77. PMID:
19458758.
Article
6. Ryu SM, Seo SW, Lee SH. Novel prognostication of patients with spinal and pelvic chondrosarcoma using deep survival neural networks. BMC Med Inform Decis Mak. 2020; 20(1):3. PMID:
31907039.
Article
7. Pesapane F, Codari M, Sardanelli F. Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur Radiol Exp. 2018; 2(1):35. PMID:
30353365.
Article
8. Ting DS, Cheung CY, Lim G, Tan GS, Quang ND, Gan A, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA. 2017; 318(22):2211–2223. PMID:
29234807.
Article
9. Han I, Kim JH, Park H, Kim HS, Seo SW. Deep learning approach for survival prediction for patients with synovial sarcoma. Tumour Biol. 2018; 40(9):1010428318799264. PMID:
30261823.
Article
10. Lee J, An JY, Choi MG, Park SH, Kim ST, Lee JH, et al. Deep learning-based survival analysis identified associations between molecular subtype and optimal adjuvant treatment of patients with gastric cancer. JCO Clin Cancer Inform. 2018; 2(2):1–14.
Article
11. Kim JK, Choi MJ, Lee JS, Hong JH, Kim CS, Seo SI, et al. A Deep Belief Network and Dempster-Shafer-Based Multiclassifier for the Pathology stage of prostate cancer. J Healthc Eng. 2018; 2018:4651582. PMID:
29755715.
Article
12. The Lancet. Artificial intelligence in health care: within touching distance. Lancet. 2018; 390(10114):2739. PMID:
29303711.
13. Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019; 17(1):195. PMID:
31665002.
Article
14. Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine learning for medical imaging. Radiographics. 2017; 37(2):505–515. PMID:
28212054.
Article
15. Hu W, Cai B, Zhang A, Calhoun VD, Wang YP. Deep collaborative learning with application to the study of multimodal brain development. IEEE Trans Biomed Eng. 2019; 66(12):3346–3359. PMID:
30872216.
Article
16. Patel V, Armstrong D, Ganguli M, Roopra S, Kantipudi N, Albashir S, et al. Deep learning in gastrointestinal endoscopy. Crit Rev Biomed Eng. 2016; 44(6):493–504. PMID:
29431094.
Article
17. Komura D, Ishikawa S. Machine learning approaches for pathologic diagnosis. Virchows Arch. 2019; 475(2):131–138. PMID:
31222375.
Article
18. Currie G, Hawk KE, Rohren E, Vial A, Klein R. Machine learning and deep learning in medical imaging: intelligent imaging. J Med Imaging Radiat Sci. 2019; 50(4):477–487. PMID:
31601480.
Article
19. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016; 316(22):2402–2410. PMID:
27898976.
Article
20. Ting DS, Pasquale LR, Peng L, Campbell JP, Lee AY, Raman R, et al. Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol. 2019; 103(2):167–175. PMID:
30361278.
Article
21. Park HJ, Kim SM, La Yun B, Jang M, Kim B, Jang JY, et al. A computer-aided diagnosis system using artificial intelligence for the diagnosis and characterization of breast masses on ultrasound: added value for the inexperienced breast radiologist. Medicine (Baltimore). 2019; 98(3):e14146. PMID:
30653149.
22. Kim K, Kim S, Lee YH, Lee SH, Lee HS, Kim S. Performance of the deep convolutional neural network based magnetic resonance image scoring algorithm for differentiating between tuberculous and pyogenic spondylitis. Sci Rep. 2018; 8(1):13124. PMID:
30177857.
Article
23. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019; 25(1):44–56. PMID:
30617339.
Article
24. Mori Y, Kudo SE, Misawa M, Saito Y, Ikematsu H, Hotta K, et al. Real-time use of artificial intelligence in identification of diminutive polyps during colonoscopy: a prospective study. Ann Intern Med. 2018; 169(6):357–366. PMID:
30105375.
25. Soffer S, Ben-Cohen A, Shimon O, Amitai MM, Greenspan H, Klang E. Convolutional neural networks for radiologic images: a radiologist's guide. Radiology. 2019; 290(3):590–606. PMID:
30694159.
Article
26. Fischer AM, Varga-Szemes A, Martin SS, Sperl JI, Sahbaee P, Neumann D, et al. Artificial intelligence-based fully automated per lobe segmentation and emphysema-quantification based on chest computed tomography compared with global initiative for chronic obstructive lung disease severity of smokers. J Thorac Imaging. 2020; 35(Suppl 1):S28–34. PMID:
32235188.
Article
29. Hannun AY, Rajpurkar P, Haghpanahi M, Tison GH, Bourn C, Turakhia MP, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med. 2019; 25(1):65–69. PMID:
30617320.
Article
30. Vahlsing T, Delbeck S, Leonhardt S, Heise HM. Noninvasive monitoring of blood glucose using color-coded photoplethysmographic images of the illuminated fingertip within the visible and near-infrared range: opportunities and questions. J Diabetes Sci Technol. 2018; 12(6):1169–1177. PMID:
30222001.
Article
31. Fernández-Caramés TM, Froiz-Míguez I, Blanco-Novoa O, Fraga-Lamas P. Enabling the internet of mobile crowdsourcing health things: a mobile fog computing, blockchain and IoT based continuous glucose monitoring system for diabetes mellitus research and care. Sensors (Basel). 2019; 19(15):E3319. PMID:
31357725.
Article
33. Dankwa-Mullan I, Rivo M, Sepulveda M, Park Y, Snowdon J, Rhee K. Transforming diabetes care through artificial intelligence: the future is here. Popul Health Manag. 2019; 22(3):229–242. PMID:
30256722.
Article
36. Ahmed MR, Zhang Y, Feng Z, Lo B, Inan OT, Liao H. Neuroimaging and machine learning for dementia diagnosis: recent advancements and future prospects. IEEE Rev Biomed Eng. 2019; 12:19–33. PMID:
30561351.
Article
37. Kim JP, Kim J, Park YH, Park SB, Lee JS, Yoo S, et al. Machine learning based hierarchical classification of frontotemporal dementia and Alzheimer's disease. Neuroimage Clin. 2019; 23:101811. PMID:
30981204.
Article
38. Beccaria M, Mellors TR, Petion JS, Rees CA, Nasir M, Systrom HK, et al. Preliminary investigation of human exhaled breath for tuberculosis diagnosis by multidimensional gas chromatography - time of flight mass spectrometry and machine learning. J Chromatogr B Analyt Technol Biomed Life Sci. 2018; 1074-1075:46–50.
Article
39. Long NP, Jung KH, Yoon SJ, Anh NH, Nghi TD, Kang YP, et al. Systematic assessment of cervical cancer initiation and progression uncovers genetic panels for deep learning-based early diagnosis and proposes novel diagnostic and prognostic biomarkers. Oncotarget. 2017; 8(65):109436–109456. PMID:
29312619.
Article
42. Hripcsak G, Duke JD, Shah NH, Reich CG, Huser V, Schuemie MJ, et al. Observational health data sciences and informatics (OHDSI): opportunities for observational researchers. Stud Health Technol Inform. 2015; 216:574–578. PMID:
26262116.
44. Azencott CA. Machine learning and genomics: precision medicine versus patient privacy. Philos Trans A Math Phys Eng Sci. 2018; 376(2128):20170350. PMID:
30082298.
Article
45. Mooney SJ, Pejaver V. Big data in public health: terminology, machine learning, and privacy. Annu Rev Public Health. 2018; 39(1):95–112. PMID:
29261408.
Article
46. Kayaalp M. Patient privacy in the era of big data. Balkan Med J. 2018; 35(1):8–17. PMID:
28903886.
Article
47. Sajid A, Abbas H. Data privacy in cloud-assisted healthcare systems: state of the art and future challenges. J Med Syst. 2016; 40(6):155. PMID:
27155893.
Article
48. You SC, Lee S, Cho SY, Park H, Jung S, Cho J, et al. Conversion of National Health Insurance Service-national sample cohort (NHIS-NSC) database into observational medical outcomes partnership-common data model (OMOP-CDM). Stud Health Technol Inform. 2017; 245:467–470. PMID:
29295138.
49. Aldeen YA, Salleh M, Razzaque MA. A comprehensive review on privacy preserving data mining. Springerplus. 2015; 4(1):694. PMID:
26587362.
Article
50. Lee J, Sun J, Wang F, Wang S, Jun CH, Jiang X. Privacy-preserving patient similarity learning in a federated environment: development and analysis. JMIR Med Inform. 2018; 6(2):e20. PMID:
29653917.
Article
51. Tariq RA, Hackert PB. Patient Confidentiality. Treasure Island, FL: StatPearls Publishing LLC.;2020.
52. Pipersburgh J. The push to increase the use of EHR technology by hospitals and physicians in the United States through the HITECH Act and the Medicare incentive program. J Health Care Finance. 2011; 38(2):54–78. PMID:
22372032.
53. John B. Are you ready for general data protection regulation? BMJ. 2018; 360:k941. PMID:
29500167.
Article
54. Pelayo S, Bras Da Costa S, Leroy N, Loiseau S, Beuscart-Zephir MC. Software as a medical device: regulatory critical issues. Stud Health Technol Inform. 2013; 183:337–342. PMID:
23388310.
56. He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K. The practical implementation of artificial intelligence technologies in medicine. Nat Med. 2019; 25(1):30–36. PMID:
30617336.
Article
61. Price WN 2nd, Gerke S, Cohen IG. Potential liability for physicians using artificial intelligence. JAMA. 2019; 322(18):1765.
Article
62. Reed C. How should we regulate artificial intelligence? Philos Trans A Math Phys Eng Sci. 2018; 376(2128):20170360. PMID:
30082306.
Article
63. Veeranki SP, Kramer D, Hayn D, Jauk S, Eggerth A, Quehenberger F, et al. Is regular re-training of a predictive delirium model necessary after deployment in routine care? Stud Health Technol Inform. 2019; 260:186–191. PMID:
31118336.