J Lipid Atheroscler.  2020 Sep;9(3):313-333. 10.12997/jla.2020.9.3.313.

Mitochondrial Fatty Acid Oxidation Disorders: Laboratory Diagnosis, Pathogenesis, and the Complicated Route to Treatment

Affiliations
  • 1Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
  • 2Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
  • 3Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands

Abstract

Mitochondrial fatty acid (FA) oxidation deficiencies represent a genetically heterogeneous group of diseases in humans caused by defects in mitochondrial FA beta-oxidation (mFAO). A general characteristic of all mFAO disorders is hypoketotic hypoglycemia resulting from the enhanced reliance on glucose oxidation and the inability to synthesize ketone bodies from FAs. Patients with a defect in the oxidation of long-chain FAs are at risk to develop cardiac and skeletal muscle abnormalities including cardiomyopathy and arrhythmias, which may progress into early death, as well as rhabdomyolysis and exercise intolerance. The diagnosis of mFAO-deficient patients has greatly been helped by revolutionary developments in the field of tandem mass spectrometry (MS) for the analysis of acylcarnitines in blood and/or urine of candidate patients. Indeed, acylcarnitines have turned out to be excellent biomarkers; not only do they provide information whether a certain patient is affected by a mFAO deficiency, but the acylcarnitine profile itself usually immediately points to which enzyme is likely deficient. Another important aspect of acylcarnitine analysis by tandem MS is that this technique allows high-throughput analysis, which explains why screening for mFAO deficiencies has now been introduced in many newborn screening programs worldwide. In this review, we will describe the current state of knowledge about mFAO deficiencies, with particular emphasis on recent developments in the area of pathophysiology and treatment.

Keyword

Fatty acid oxidation disorders; Fatty acid oxidation; Mitochondria; Cardiomyocytes; Acylcarnitines; Inborn errors of metabolism
Full Text Links
  • JLA
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr