J Rheum Dis.  2020 Jul;27(3):136-151. 10.4078/jrd.2020.27.3.136.

Utility of Magnetic Resonance Imaging and Positron Emission Tomography in Rheumatic Diseases

Affiliations
  • 1Division of Rheumatology, Department of Internal Medicine, Chung-Ang University Hospital, Seoul, Korea
  • 2Division of Rheumatology, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
  • 3Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
  • 4Division of Rheumatology, Department of Internal Medicine, Gachon University College of Medicine Gil Medical Center, Incheon, Korea

Abstract

The use of magnetic resonance imaging (MRI) and positron emission tomography (PET) in rheumatology allows a better understanding of the pathophysiology of the disease as well as early diagnosis and appropriate evaluation of the disease status and treatment responses. Despite the limited availability because of the high cost, there is growing evidence for the advantages and clinical application of these modalities to various rheumatic diseases. This review discusses the basic mechanisms and clinical applications of MRI and PET in certain rheumatic diseases, including rheumatoid arthritis, axial spondyloarthritis, idiopathic inflammatory myopathies, large vessel vasculitis, central nervous system disease associated with rheumatic diseases, polymyalgia rheumatica, adult-onset Still’s disease, and immunoglobulin G4-related disease.

Keyword

Magnetic resonance imaging; Positron emission tomography; Rheumatic diseases

Figure

  • Figure 1 Wrist images of radiograph (A) and magnetic resonance imaging (B∼D) in a patient with rheumatoid arthritis. (A) Plain radiograph shows only joint space narrowing of carpal bones. (B) T1-weighted image reveals erosions of the carpal bones in the low-intensity signal. (C) These lesions slightly increase signal intensity by T2-weighted sequence. (D) Active inflammation with high-intensity signal is noticeable at the same sites as shown in (B and C) by fat suppressed T2-weighted image. Lesions are indicated by arrowheads. Adopted from Kim et al. J Korean Rheum Assoc 1995;2: 9-18 [20].

  • Figure 2 Active inflammatory lesions of the sacroiliac joints in non-radiographic axial spondyloarthritis. (A) There is no evidence of sacroiliitis on plain radiography. (B and C) Magnetic resonance imaging short tau inversion recovery (B) and fat suppressed gadolinium-enhanced T1-weighted images (C) show bone marrow edema with high-intensity signal (arrows). Adopted from Lee. J Rheum Dis 2014;21:110-21 [47].

  • Figure 3 18F-fluorodeoxyglucose positron emission tomography images of a patient with giant cell arteritis. There is increased uptake of fluorodeoxyglucose in the walls of ascending aorta, aortic arch, thoracic descending aorta, both subclavian arteries, both common carotid arteries and both common femoral arteries. Adopted from Yoo et al. J Rheum Dis 2015;22: 382-6 [114].

  • Figure 4 Positron emission tomography/computed tomography (PET/CT) images of patient with Takayasu’s arteritis (axial view). (A) The initial image obtained at the time of diagnosis demonstrates increased uptake of fluorodeoxyglucose at both common carotid arteries, subclavian arteries and thoracic and abdominal aorta (white arrow). (B) PET/CT after 3 months of the treatment with infliximab showed the uptake of both common carotid arteries, subclavian artery and aorta baseline is decreased (red arrow). Adopted from Choi et al. J Rheum Dis 2017;24: 55-9 [125].


Cited by  2 articles

Anterior Chest Wall Involvement in Spondyloarthritis Patients as Detected by Magnetic Resonance Imaging: A Case Series and Literature Review
Tae-Han Lee, Chul-min Lee, Tae-Hwan Kim, Seunghun Lee
J Rheum Dis. 2021;28(3):159-164.    doi: 10.4078/jrd.2021.28.3.159.

Fracture Risk and Its Prevention Patterns in Korean Patients with Polymyalgia Rheumatica: a Retrospective Cohort Study
Bora Nam, Yoon-Kyoung Sung, Chan-Bum Choi, Tae-Hwan Kim, Jae-Bum Jun, Sang-Cheol Bae, Dae-Hyun Yoo, Soo-Kyung Cho
J Korean Med Sci. 2021;36(41):e263.    doi: 10.3346/jkms.2021.36.e263.


Reference

1. Westbrook C, Roth CK, Talbot J. 2011. MRI in practice. 4th ed. Wiley-Blackwell;Chichester:
2. Grover VP, Tognarelli JM, Crossey MM, Cox IJ, Taylor-Robinson SD, McPhail MJ. 2015; Magnetic resonance imaging: principles and techniques: lessons for clinicians. J Clin Exp Hepatol. 5:246–55. DOI: 10.1016/j.jceh.2015.08.001. PMID: 26628842. PMCID: PMC4632105.
Article
3. May DA, Disler DG, Jones EA, Balkissoon AA, Manaster BJ. 2000; Abnormal signal intensity in skeletal muscle at MR imaging: patterns, pearls, and pitfalls. Radiographics. 20:S295–315. DOI: 10.1148/radiographics.20.suppl_1.g00oc18s295. PMID: 11046180.
Article
4. Østergaard M, Duer A, Møller U, Ejbjerg B. 2004; Magnetic resonance imaging of peripheral joints in rheumatic diseases. Best Pract Res Clin Rheumatol. 18:861–79. DOI: 10.1016/j.berh.2004.06.001. PMID: 15501187.
Article
5. Lambert RG, Bakker PA, van der Heijde D, Weber U, Rudwaleit M, Hermann KG, et al. 2016; Defining active sacroiliitis on MRI for classification of axial spondyloarthritis: update by the ASAS MRI working group. Ann Rheum Dis. 75:1958–63. DOI: 10.1136/annrheumdis-2015-208642. PMID: 26768408.
Article
6. Sung S, Kim HS, Kwon JW. 2017; MRI assessment of sacroiliitis for the diagnosis of axial spondyloarthropathy: comparison of fat-saturated T2, STIR and contrast-enhanced sequences. Br J Radiol. 90:20170090. DOI: 10.1259/bjr.20170090. PMID: 28749173. PMCID: PMC5853363.
Article
7. Delfaut EM, Beltran J, Johnson G, Rousseau J, Marchandise X, Cotten A. 1999; Fat suppression in MR imaging: techniques and pitfalls. Radiographics. 19:373–82. DOI: 10.1148/radiographics.19.2.g99mr03373. PMID: 10194785.
Article
8. Ostergaard M, Conaghan PG, O'Connor P, Szkudlarek M, Klarlund M, Emery P, et al. 2009; Reducing invasiveness, duration, and cost of magnetic resonance imaging in rheumatoid arthritis by omitting intravenous contrast injection -- does it change the assessment of inflammatory and destructive joint changes by the OMERACT RAMRIS? J Rheumatol. 36:1806–10. DOI: 10.3899/jrheum.090350. PMID: 19671817.
Article
9. Sudoł-Szopińska I, Jurik AG, Eshed I, Lennart J, Grainger A, Østergaard M, et al. 2015; Recommendations of the ESSR Arthritis Subcommittee for the use of magnetic resonance imaging in musculoskeletal rheumatic diseases. Semin Musculoskelet Radiol. 19:396–411. DOI: 10.1055/s-0035-1564696. PMID: 26583367.
Article
10. Eshed I, Hermann KGA. 2018; MRI in imaging of rheumatic diseases: an overview for clinicians. Clin Exp Rheumatol. 36(Suppl 114):10–5. PMID: 30296976.
11. Østergaard M, Pedersen SJ, Døhn UM. 2008; Imaging in rheumatoid arthritis--status and recent advances for magnetic resonance imaging, ultrasonography, computed tomography and conventional radiography. Best Pract Res Clin Rheumatol. 22:1019–44. DOI: 10.1016/j.berh.2008.09.014. PMID: 19041075.
12. Hetland ML, Ejbjerg B, Hørslev-Petersen K, Jacobsen S, Vestergaard A, Jurik AG, et al. CIMESTRA study group. 2009; MRI bone oedema is the strongest predictor of subsequent radiographic progression in early rheumatoid arthritis. Results from a 2-year randomised controlled trial (CIMESTRA). Ann Rheum Dis. 68:384–90. DOI: 10.1136/ard.2008.088245. PMID: 18388160.
Article
13. Hetland ML, Stengaard-Pedersen K, Junker P, Østergaard M, Ejbjerg BJ, Jacobsen S, et al. CIMESTRA study group. 2010; Radiographic progression and remission rates in early rheumatoid arthritis - MRI bone oedema and anti-CCP predicted radiographic progression in the 5-year extension of the double-blind randomised CIMESTRA trial. Ann Rheum Dis. 69:1789–95. DOI: 10.1136/ard.2009.125534. PMID: 20444751.
Article
14. Haavardsholm EA, Bøyesen P, Østergaard M, Schildvold A, Kvien TK. 2008; Magnetic resonance imaging findings in 84 patients with early rheumatoid arthritis: bone marrow oedema predicts erosive progression. Ann Rheum Dis. 67:794–800. DOI: 10.1136/ard.2007.071977. PMID: 17981915.
Article
15. Nieuwenhuis WP, van Steenbergen HW, Stomp W, Stijnen T, Huizinga TW, Bloem JL, et al. 2016; The course of bone marrow edema in early undifferentiated arthritis and rheumatoid arthritis: a longitudinal magnetic resonance imaging study at bone level. Arthritis Rheumatol. 68:1080–8. DOI: 10.1002/art.39550. PMID: 26681086.
16. Døhn UM, Ejbjerg BJ, Hasselquist M, Narvestad E, Møller J, Thomsen HS, et al. 2008; Detection of bone erosions in rheumatoid arthritis wrist joints with magnetic resonance imaging, computed tomography and radiography. Arthritis Res Ther. 10:R25. DOI: 10.1186/ar2378. PMID: 18307764. PMCID: PMC2374457.
Article
17. Døhn UM, Ejbjerg BJ, Court-Payen M, Hasselquist M, Narvestad E, Szkudlarek M, et al. 2006; Are bone erosions detected by magnetic resonance imaging and ultrasonography true erosions? A comparison with computed tomography in rheumatoid arthritis metacarpophalangeal joints. Arthritis Res Ther. 8:R110. DOI: 10.1186/ar1995. PMID: 16848914. PMCID: PMC1779369.
18. Døhn UM, Ejbjerg B, Boonen A, Hetland ML, Hansen MS, Knudsen LS, et al. 2011; No overall progression and occasional repair of erosions despite persistent inflammation in adalimumab-treated rheumatoid arthritis patients: results from a longitudinal comparative MRI, ultrasonography, CT and radiography study. Ann Rheum Dis. 70:252–8. DOI: 10.1136/ard.2009.123729. PMID: 20980282.
19. Oldendorf W. Oldendorf W, Oldendorf W, editors. 1988. Advantages and disadvantages of MRI. Basics of magnetic resonance imaging. Springer;Boston: DOI: 10.1007/978-1-4613-2081-4.
Article
20. Kim HY, Kim JA, Lee SK, Hong CS, Suh JS. 1995; The utility of wrist magnetic resonance imaging in rheumatoid arthritis for disease activity measurement. J Korean Rheum Assoc. 2:9–18.
21. Ostendorf B, Scherer A, Mödder U, Schneider M. 2004; Diagnostic value of magnetic resonance imaging of the forefeet in early rheumatoid arthritis when findings on imaging of the metacarpophalangeal joints of the hands remain normal. Arthritis Rheum. 50:2094–102. DOI: 10.1002/art.20314. PMID: 15248206.
Article
22. McQueen FM, Gao A, Ostergaard M, King A, Shalley G, Robinson E, et al. 2007; High-grade MRI bone oedema is common within the surgical field in rheumatoid arthritis patients undergoing joint replacement and is associated with osteitis in subchondral bone. Ann Rheum Dis. 66:1581–7. DOI: 10.1136/ard.2007.070326. PMID: 17491098. PMCID: PMC2095325.
Article
23. Tamai M, Kawakami A, Uetani M, Takao S, Arima K, Iwamoto N, et al. 2009; A prediction rule for disease outcome in patients with undifferentiated arthritis using magnetic resonance imaging of the wrists and finger joints and serologic autoantibodies. Arthritis Rheum. 61:772–8. DOI: 10.1002/art.24711. PMID: 19479686.
Article
24. Duer-Jensen A, Hørslev-Petersen K, Hetland ML, Bak L, Ejbjerg BJ, Hansen MS, et al. 2011; Bone edema on magnetic resonance imaging is an independent predictor of rheumatoid arthritis development in patients with early undifferentiated arthritis. Arthritis Rheum. 63:2192–202. DOI: 10.1002/art.30396. PMID: 21484772.
Article
25. Nieuwenhuis WP, van Steenbergen HW, Mangnus L, Newsum EC, Bloem JL, Huizinga TWJ, et al. 2017; Evaluation of the diagnostic accuracy of hand and foot MRI for early Rheumatoid Arthritis. Rheumatology (Oxford). 56:1367–77. DOI: 10.1093/rheumatology/kex167. PMID: 28460018.
Article
26. Colebatch AN, Edwards CJ, Østergaard M, van der Heijde D, Balint PV, D'Agostino MA, et al. 2013; EULAR recommendations for the use of imaging of the joints in the clinical management of rheumatoid arthritis. Ann Rheum Dis. 72:804–14. DOI: 10.1136/annrheumdis-2012-203158. PMID: 23520036.
Article
27. Ostergaard M, Stoltenberg M, Løvgreen-Nielsen P, Volck B, Jensen CH, Lorenzen I. 1997; Magnetic resonance imaging-determined synovial membrane and joint effusion volumes in rheumatoid arthritis and osteoarthritis: comparison with the macroscopic and microscopic appearance of the synovium. Arthritis Rheum. 40:1856–67. DOI: 10.1002/art.1780401020. PMID: 9336422.
28. Humby F, Mahto A, Ahmed M, Barr A, Kelly S, Buch M, et al. 2017; The relationship between synovial pathobiology and magnetic resonance imaging abnormalities in rheumatoid arthritis: a systematic review. J Rheumatol. 44:1311–24. DOI: 10.3899/jrheum.161314. PMID: 28711880.
Article
29. Baker JF, Conaghan PG, Emery P, Baker DG, Ostergaard M. 2017; Relationship of patient-reported outcomes with MRI measures in rheumatoid arthritis. Ann Rheum Dis. 76:486–90. DOI: 10.1136/annrheumdis-2016-209463. PMID: 27432355.
Article
30. Haavardsholm EA, Østergaard M, Hammer HB, Bøyesen P, Boonen A, van der Heijde D, et al. 2009; Monitoring anti-TNFalpha treatment in rheumatoid arthritis: responsiveness of magnetic resonance imaging and ultrasonography of the dominant wrist joint compared with conventional measures of disease activity and structural damage. Ann Rheum Dis. 68:1572–9. DOI: 10.1136/ard.2008.091801. PMID: 19019893.
31. Peterfy C, Emery P, Tak PP, Østergaard M, DiCarlo J, Otsa K, et al. 2016; MRI assessment of suppression of structural damage in patients with rheumatoid arthritis receiving rituximab: results from the randomised, placebo-controlled, double-blind RA-SCORE study. Ann Rheum Dis. 75:170–7. DOI: 10.1136/annrheumdis-2014-206015. PMID: 25355728. PMCID: PMC4717395.
Article
32. Peterfy C, Strand V, Tian L, Østergaard M, Lu Y, DiCarlo J, et al. 2017; Short-term changes on MRI predict long-term changes on radiography in rheumatoid arthritis: an analysis by an OMERACT Task Force of pooled data from four randomised controlled trials. Ann Rheum Dis. 76:992–7. DOI: 10.1136/annrheumdis-2016-210311. PMID: 27974302.
Article
33. Østergaard M, Emery P, Conaghan PG, Fleischmann R, Hsia EC, Xu W, et al. 2011; Significant improvement in synovitis, osteitis, and bone erosion following golimumab and methotrexate combination therapy as compared with methotrexate alone: a magnetic resonance imaging study of 318 methotrexate-naive rheumatoid arthritis patients. Arthritis Rheum. 63:3712–22. DOI: 10.1002/art.30592. PMID: 22127693.
Article
34. Perry D, Stewart N, Benton N, Robinson E, Yeoman S, Crabbe J, et al. 2005; Detection of erosions in the rheumatoid hand; a comparative study of multidetector computerized tomography versus magnetic resonance scanning. J Rheumatol. 32:256–67.
35. McQueen F, Lassere M, Edmonds J, Conaghan P, Peterfy C, Bird P, et al. 2003; OMERACT rheumatoid arthritis magnetic resonance imaging studies. Summary of OMERACT 6 MR imaging module. J Rheumatol. 30:1387–92. PMID: 12784423.
36. Glinatsi D, Lillegraven S, Haavardsholm EA, Eshed I, Conaghan PG, Peterfy C, et al. 2015; Validation of the OMERACT magnetic resonance imaging joint space narrowing score for the wrist in a multireader longitudinal trial. J Rheumatol. 42:2480–5. DOI: 10.3899/jrheum.141009. PMID: 25684773.
Article
37. Ostergaard M, Bøyesen P, Eshed I, Gandjbakhch F, Lillegraven S, Bird P, et al. 2011; Development and preliminary validation of a magnetic resonance imaging joint space narrowing score for use in rheumatoid arthritis: potential adjunct to the OMERACT RA MRI scoring system. J Rheumatol. 38:2045–50. DOI: 10.3899/jrheum.110422. PMID: 21885515.
Article
38. Haavardsholm EA, Ostergaard M, Ejbjerg BJ, Kvan NP, Uhlig TA, Lilleås FG, et al. 2005; Reliability and sensitivity to change of the OMERACT rheumatoid arthritis magnetic resonance imaging score in a multireader, longitudinal setting. Arthritis Rheum. 52:3860–7. DOI: 10.1002/art.21493. PMID: 16320333.
Article
39. Axelsen MB, Eshed I, Hørslev-Petersen K, Stengaard-Pedersen K, Hetland ML, Møller J, et al. OPERA study group. 2015; A treat-to-target strategy with methotrexate and intra-articular triamcinolone with or without adalimumab effectively reduces MRI synovitis, osteitis and tenosynovitis and halts structural damage progression in early rheumatoid arthritis: results from the OPERA randomised controlled trial. Ann Rheum Dis. 74:867–75. DOI: 10.1136/annrheumdis-2013-204537. PMID: 24412895.
Article
40. Conaghan PG, Durez P, Alten RE, Burmester GR, Tak PP, Klareskog L, et al. 2013; Impact of intravenous abatacept on synovitis, osteitis and structural damage in patients with rheumatoid arthritis and an inadequate response to methotrexate: the ASSET randomised controlled trial. Ann Rheum Dis. 72:1287–94. DOI: 10.1136/annrheumdis-2012-201611. PMID: 22915624. PMCID: PMC3711370.
Article
41. Baker JF, Ostergaard M, Emery P, Hsia EC, Lu J, Baker DG, et al. 2014; Early MRI measures independently predict 1-year and 2-year radiographic progression in rheumatoid arthritis: secondary analysis from a large clinical trial. Ann Rheum Dis. 73:1968–74. DOI: 10.1136/annrheumdis-2013-203444. PMID: 23904470.
Article
42. Bøyesen P, Haavardsholm EA, Ostergaard M, van der Heijde D, Sesseng S, Kvien TK. 2011; MRI in early rheumatoid arthritis: synovitis and bone marrow oedema are independent predictors of subsequent radiographic progression. Ann Rheum Dis. 70:428–33. DOI: 10.1136/ard.2009.123950. PMID: 20810395.
Article
43. Hetland ML, Østergaard M, Stengaard-Pedersen K, Junker P, Ejbjerg B, Jacobsen S, et al. The CIMESTRA Study Group. 2019; Anti-cyclic citrullinated peptide antibodies, 28-joint Disease Activity Score, and magnetic resonance imaging bone oedema at baseline predict 11 years' functional and radiographic outcome in early rheumatoid arthritis. Scand J Rheumatol. 48:1–8. DOI: 10.1080/03009742.2018.1466362. PMID: 30101636.
Article
44. Brown AK, Conaghan PG, Karim Z, Quinn MA, Ikeda K, Peterfy CG, et al. 2008; An explanation for the apparent dissociation between clinical remission and continued structural deterioration in rheumatoid arthritis. Arthritis Rheum. 58:2958–67. DOI: 10.1002/art.23945. PMID: 18821687.
Article
45. Gandjbakhch F, Conaghan PG, Ejbjerg B, Haavardsholm EA, Foltz V, Brown AK, et al. 2011; Synovitis and osteitis are very frequent in rheumatoid arthritis clinical remission: results from an MRI study of 294 patients in clinical remission or low disease activity state. J Rheumatol. 38:2039–44. DOI: 10.3899/jrheum.110421. PMID: 21885514.
Article
46. Rudwaleit M, van der Heijde D, Landewé R, Listing J, Akkoc N, Brandt J, et al. 2009; The development of Assessment of Spondyloarthritis International Society classification criteria for axial spondyloarthritis (part II): validation and final selection. Ann Rheum Dis. 68:777–83. DOI: 10.1136/ard.2009.108233. PMID: 19297344.
Article
47. Lee S. 2014; MRI features of axial spondyloarthritis and differential diagnosis: focusing on the spine and sacroiliac joint. J Rheum Dis. 21:110–21. DOI: 10.4078/jrd.2014.21.3.110.
Article
48. Arnbak B, Grethe Jurik A, Hørslev-Petersen K, Hendricks O, Hermansen LT, Loft AG, et al. 2016; Associations between spondyloarthritis features and magnetic resonance imaging findings: a cross-sectional analysis of 1,020 patients with persistent low back pain. Arthritis Rheumatol. 68:892–900. DOI: 10.1002/art.39551. PMID: 26681230.
Article
49. de Winter J, de Hooge M, van de Sande M, de Jong H, van Hoeven L, de Koning A, et al. 2018; Magnetic resonance imaging of the sacroiliac joints indicating sacroiliitis according to the Assessment of SpondyloArthritis International Society definition in healthy individuals, runners, and women with postpartum back pain. Arthritis Rheumatol. 70:1042–8. DOI: 10.1002/art.40475. PMID: 29513924. PMCID: PMC6032910.
Article
50. Varkas G, de Hooge M, Renson T, De Mits S, Carron P, Jacques P, et al. 2018; Effect of mechanical stress on magnetic resonance imaging of the sacroiliac joints: assessment of military recruits by magnetic resonance imaging study. Rheumatology (Oxford). 57:508–13. DOI: 10.1093/rheumatology/kex491. PMID: 29253272.
Article
51. Weber U, Jurik AG, Zejden A, Larsen E, Jørgensen SH, Rufibach K, et al. 2018; Frequency and anatomic distribution of magnetic resonance imaging features in the sacroiliac joints of young athletes: exploring "background noise" toward a data-driven definition of sacroiliitis in early spondyloarthritis. Arthritis Rheumatol. 70:736–45. DOI: 10.1002/art.40429. PMID: 29430880.
52. Baraliakos X, Richter A, Feldmann D, Ott A, Buelow R, Schmidt CO, et al. 2020; Frequency of MRI changes suggestive of axial spondyloarthritis in the axial skeleton in a large population-based cohort of individuals aged <45 years. Ann Rheum Dis. 79:186–92. DOI: 10.1136/annrheumdis-2019-215553. PMID: 31744822.
53. Diekhoff T, Hermann KG, Greese J, Schwenke C, Poddubnyy D, Hamm B, et al. 2017; Comparison of MRI with radiography for detecting structural lesions of the sacroiliac joint using CT as standard of reference: results from the SIMACT study. Ann Rheum Dis. 76:1502–8. DOI: 10.1136/annrheumdis-2016-210640. PMID: 28283515.
Article
54. Bakker PA, van den Berg R, Hooge M, van Lunteren M, Ez-Zaitouni Z, Fagerli KM, et al. 2018; Impact of replacing radiographic sacroiliitis by magnetic resonance imaging structural lesions on the classification of patients with axial spondyloarthritis. Rheumatology (Oxford). 57:1186–93. DOI: 10.1093/rheumatology/kex532. PMID: 29584927.
Article
55. Maksymowych WP, Wichuk S, Chiowchanwisawakit P, Lambert RG, Pedersen SJ. 2014; Fat metaplasia and backfill are key intermediaries in the development of sacroiliac joint ankylosis in patients with ankylosing spondylitis. Arthritis Rheumatol. 66:2958–67. DOI: 10.1002/art.38792. PMID: 25047851.
Article
56. Song IH, Hermann KG, Haibel H, Althoff CE, Poddubnyy D, Listing J, et al. 2011; Relationship between active inflammatory lesions in the spine and sacroiliac joints and new development of chronic lesions on whole-body MRI in early axial spondyloarthritis: results of the ESTHER trial at week 48. Ann Rheum Dis. 70:1257–63. DOI: 10.1136/ard.2010.147033. PMID: 21551507. PMCID: PMC3103667.
Article
57. Ziegeler K, Eshkal H, Schorr C, Sieper J, Diekhoff T, Makowski MR, et al. 2018; Age- and sex-dependent frequency of fat metaplasia and other structural changes of the sacroiliac joints in patients without axial spondyloarthritis: a retrospective, cross-sectional MRI study. J Rheumatol. 45:915–21. DOI: 10.3899/jrheum.170904. PMID: 29657142.
Article
58. de Hooge M, van den Berg R, Navarro-Compán V, Reijnierse M, van Gaalen F, Fagerli K, et al. 2016; Patients with chronic back pain of short duration from the SPACE cohort: which MRI structural lesions in the sacroiliac joints and inflammatory and structural lesions in the spine are most specific for axial spondyloarthritis? Ann Rheum Dis. 75:1308–14. DOI: 10.1136/annrheumdis-2015-207823. PMID: 26286018.
Article
59. Lambert RG, Salonen D, Rahman P, Inman RD, Wong RL, Einstein SG, et al. 2007; Adalimumab significantly reduces both spinal and sacroiliac joint inflammation in patients with ankylosing spondylitis: a multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum. 56:4005–14. DOI: 10.1002/art.23044. PMID: 18050198.
Article
60. Sieper J, van der Heijde D, Dougados M, Mease PJ, Maksymowych WP, Brown MA, et al. 2013; Efficacy and safety of adalimumab in patients with non-radiographic axial spondyloarthritis: results of a randomised placebo-controlled trial (ABILITY-1). Ann Rheum Dis. 72:815–22. DOI: 10.1136/annrheumdis-2012-201766. PMID: 22772328. PMCID: PMC3664374.
Article
61. van der Heijde D, Sieper J, Maksymowych WP, Lambert RG, Chen S, Hojnik M, et al. 2018; Clinical and MRI remission in patients with nonradiographic axial spondyloarthritis who received long-term open-label adalimumab treatment: 3-year results of the ABILITY-1 trial. Arthritis Res Ther. 20:61. DOI: 10.1186/s13075-018-1556-5. PMID: 29587851. PMCID: PMC5870399.
Article
62. Pedersen SJ, Poddubnyy D, Sørensen IJ, Loft AG, Hindrup JS, Thamsborg G, et al. 2016; Course of magnetic resonance imaging-detected inflammation and structural lesions in the sacroiliac joints of patients in the randomized, double-blind, placebo-controlled danish multicenter study of adalimumab in spondyloarthritis, as assessed by the Berlin and Spondyloarthritis Research Consortium of Canada methods. Arthritis Rheumatol. 68:418–29. DOI: 10.1002/art.39434. PMID: 26414004.
63. Braun J, Baraliakos X, Hermann KG, Landewé R, Machado PM, Maksymowych WP, et al. 2017; Effect of certolizumab pegol over 96 weeks of treatment on inflammation of the spine and sacroiliac joints, as measured by MRI, and the association between clinical and MRI outcomes in patients with axial spondyloarthritis. RMD Open. 3:e000430. DOI: 10.1136/rmdopen-2017-000430. PMID: 28848654. PMCID: PMC5566980.
64. Baraliakos X, Borah B, Braun J, Baeten D, Laurent D, Sieper J, et al. 2016; Long-term effects of secukinumab on MRI findings in relation to clinical efficacy in subjects with active ankylosing spondylitis: an observational study. Ann Rheum Dis. 75:408–12. DOI: 10.1136/annrheumdis-2015-207544. PMID: 26248638.
Article
65. Maksymowych WP, Wichuk S, Dougados M, Jones HE, Pedersen R, Szumski A, et al. 2018; Modification of structural lesions on MRI of the sacroiliac joints by etanercept in the EMBARK trial: a 12-week randomised placebo-controlled trial in patients with non-radiographic axial spondyloarthritis. Ann Rheum Dis. 77:78–84. DOI: 10.1136/annrheumdis-2017-211605. PMID: 28970212. PMCID: PMC5754741.
Article
66. Pipitone N. 2016; Value of MRI in diagnostics and evaluation of myositis. Curr Opin Rheumatol. 28:625–30. DOI: 10.1097/BOR.0000000000000326. PMID: 27454210.
Article
67. Lampa J, Nennesmo I, Einarsdottir H, Lundberg I. 2001; MRI guided muscle biopsy confirmed polymyositis diagnosis in a patient with interstitial lung disease. Ann Rheum Dis. 60:423–6. DOI: 10.1136/ard.60.4.423. PMID: 11247879. PMCID: PMC1753594.
Article
68. Tomasová Studynková J, Charvát F, Jarosová K, Vencovsky J. 2007; The role of MRI in the assessment of polymyositis and dermatomyositis. Rheumatology (Oxford). 46:1174–9. DOI: 10.1093/rheumatology/kem088. PMID: 17500079.
69. Theodorou DJ, Theodorou SJ, Kakitsubata Y. 2012; Skeletal muscle disease: patterns of MRI appearances. Br J Radiol. 85:e1298–308. DOI: 10.1259/bjr/14063641. PMID: 22960244. PMCID: PMC3611737.
Article
70. Kubínová K, Mann H, Vencovský J. 2017; MRI scoring methods used in evaluation of muscle involvement in patients with idiopathic inflammatory myopathies. Curr Opin Rheumatol. 29:623–31. DOI: 10.1097/BOR.0000000000000435. PMID: 28796007.
Article
71. Pipitone N, Notarnicola A, Levrini G, Spaggiari L, Scardapane A, Iannone F, et al. 2016; Do dermatomyositis and polymyositis affect similar thigh muscles? A comparative MRI-based study. Clin Exp Rheumatol. 34:1098–100. PMID: 27991408.
72. Barsotti S, Zampa V, Talarico R, Minichilli F, Ortori S, Iacopetti V, et al. 2016; Thigh magnetic resonance imaging for the evaluation of disease activity in patients with idiopathic inflammatory myopathies followed in a single center. Muscle Nerve. 54:666–72. DOI: 10.1002/mus.25099. PMID: 27279002.
Article
73. Andersson H, Kirkhus E, Garen T, Walle-Hansen R, Merckoll E, Molberg Ø. 2017; Comparative analyses of muscle MRI and muscular function in anti-synthetase syndrome patients and matched controls: a cross-sectional study. Arthritis Res Ther. 19:17. DOI: 10.1186/s13075-017-1219-y. PMID: 28122635. PMCID: PMC5264447.
Article
74. Yao L, Yip AL, Shrader JA, Mesdaghinia S, Volochayev R, Jansen AV, et al. 2016; Magnetic resonance measurement of muscle T2, fat-corrected T2 and fat fraction in the assessment of idiopathic inflammatory myopathies. Rheumatology (Oxford). 55:441–9. DOI: 10.1093/rheumatology/kev344. PMID: 26412808. PMCID: PMC4757924.
Article
75. Elessawy SS, Abd El-Ghaffar Borg M, Abd El-Salam Mohamed M, Elhawary GE, Abd El-Salam EM. 2013; The role of MRI in the evaluation of muscle diseases. Egypt J Radiol Nucl Med. 44:607–15. DOI: 10.1016/j.ejrnm.2013.04.002.
76. Dion E, Cherin P, Payan C, Fournet JC, Papo T, Maisonobe T, et al. 2002; Magnetic resonance imaging criteria for distinguishing between inclusion body myositis and polymyositis. J Rheumatol. 29:1897–906. PMID: 12233884.
77. Malattia C, Damasio MB, Madeo A, Pistorio A, Providenti A, Pederzoli S, et al. 2014; Whole-body MRI in the assessment of disease activity in juvenile dermatomyositis. Ann Rheum Dis. 73:1083–90. DOI: 10.1136/annrheumdis-2012-202915. PMID: 23636654.
Article
78. Yoshida K, Kurosaka D, Joh K, Matsushima S, Takahashi E, Hirai K, et al. 2010; Fasciitis as a common lesion of dermatomyositis, demonstrated early after disease onset by en bloc biopsy combined with magnetic resonance imaging. Arthritis Rheum. 62:3751–9. DOI: 10.1002/art.27704. PMID: 20722021.
Article
79. Pinal-Fernandez I, Casal-Dominguez M, Carrino JA, Lahouti AH, Basharat P, Albayda J, et al. 2017; Thigh muscle MRI in immune-mediated necrotising myopathy: extensive oedema, early muscle damage and role of anti-SRP autoantibodies as a marker of severity. Ann Rheum Dis. 76:681–7. DOI: 10.1136/annrheumdis-2016-210198. PMID: 27651398. PMCID: PMC6019551.
Article
80. Cantwell C, Ryan M, O'Connell M, Cunningham P, Brennan D, Costigan D, et al. 2005; A comparison of inflammatory myopathies at whole-body turbo STIR MRI. Clin Radiol. 60:261–7. DOI: 10.1016/j.crad.2004.06.027. PMID: 15664582.
Article
81. Choe YH, Kim DK, Koh EM, Do YS, Lee WR. 1999; Takayasu arteritis: diagnosis with MR imaging and MR angiography in acute and chronic active stages. J Magn Reson Imaging. 10:751–7. DOI: 10.1002/(SICI)1522-2586(199911)10:5<751::AID-JMRI20>3.0.CO;2-Y.
Article
82. Dejaco C, Ramiro S, Duftner C, Besson FL, Bley TA, Blockmans D, et al. 2018; EULAR recommendations for the use of imaging in large vessel vasculitis in clinical practice. Ann Rheum Dis. 77:636–43. DOI: 10.1136/annrheumdis-2017-212649. PMID: 29358285.
Article
83. Yamada I, Nakagawa T, Himeno Y, Kobayashi Y, Numano F, Shibuya H. 2000; Takayasu arteritis: diagnosis with breath-hold contrast-enhanced three-dimensional MR angiography. J Magn Reson Imaging. 11:481–7. DOI: 10.1002/(SICI)1522-2586(200005)11:5<481::AID-JMRI3>3.0.CO;2-4. PMID: 10813857.
Article
84. Barra L, Kanji T, Malette J, Pagnoux C. CanVasc. 2018; Imaging modalities for the diagnosis and disease activity assessment of Takayasu's arteritis: a systematic review and meta-analysis. Autoimmun Rev. 17:175–87. DOI: 10.1016/j.autrev.2017.11.021. PMID: 29313811.
Article
85. Tso E, Flamm SD, White RD, Schvartzman PR, Mascha E, Hoffman GS. 2002; Takayasu arteritis: utility and limitations of magnetic resonance imaging in diagnosis and treatment. Arthritis Rheum. 46:1634–42. DOI: 10.1002/art.10251. PMID: 12115196.
Article
86. Bley TA, Wieben O, Uhl M, Thiel J, Schmidt D, Langer M. 2005; High-resolution MRI in giant cell arteritis: imaging of the wall of the superficial temporal artery. AJR Am J Roentgenol. 184:283–7. DOI: 10.2214/ajr.184.1.01840283. PMID: 15615989.
Article
87. Bley TA, Uhl M, Carew J, Markl M, Schmidt D, Peter HH, et al. 2007; Diagnostic value of high-resolution MR imaging in giant cell arteritis. AJNR Am J Neuroradiol. 28:1722–7. DOI: 10.3174/ajnr.A0638. PMID: 17885247.
Article
88. Buttgereit F, Dejaco C, Matteson EL, Dasgupta B. 2016; Polymyalgia rheumatica and giant cell arteritis: a systematic review. JAMA. 315:2442–58. DOI: 10.1001/jama.2016.5444. PMID: 27299619.
89. Khan A, Dasgupta B. 2015; Imaging in giant cell arteritis. Curr Rheumatol Rep. 17:52. DOI: 10.1007/s11926-015-0527-y. PMID: 26113013.
Article
90. ACR-ASNR-SPR Practice parameter for the performance and interpretation of magnetic resonance imaging (MRI) of the brain. American Society Neuroradiology, 2019. Available from: https://www.acr.org/-/media/ACR/Files/Practice-Parameters/MR-Brain.pdf. cited 2020 May 1.
91. Radue EW, Weigel M, Wiest R, Urbach H. 2016; Introduction to magnetic resonance imaging for neurologists. Continuum (Minneap Minn). 22:1379–98. DOI: 10.1212/CON.0000000000000391. PMID: 27740981.
Article
92. Sarbu N, Alobeidi F, Toledano P, Espinosa G, Giles I, Rahman A, et al. 2015; Brain abnormalities in newly diagnosed neuropsychiatric lupus: systematic MRI approach and correlation with clinical and laboratory data in a large multicenter cohort. Autoimmun Rev. 14:153–9. DOI: 10.1016/j.autrev.2014.11.001. PMID: 25461835.
Article
93. Kozora E, West SG, Kotzin BL, Julian L, Porter S, Bigler E. 1998; Magnetic resonance imaging abnormalities and cognitive deficits in systemic lupus erythematosus patients without overt central nervous system disease. Arthritis Rheum. 41:41–7. DOI: 10.1002/1529-0131(199801)41:1<41::AID-ART6>3.0.CO;2-7. PMID: 9433868.
Article
94. Salvarani C, Brown RD Jr, Calamia KT, Christianson TJ, Weigand SD, Miller DV, et al. 2007; Primary central nervous system vasculitis: analysis of 101 patients. Ann Neurol. 62:442–51. DOI: 10.1002/ana.21226. PMID: 17924545.
Article
95. Molloy ES, Singhal AB, Calabrese LH. 2008; Tumour-like mass lesion: an under-recognised presentation of primary angiitis of the central nervous system. Ann Rheum Dis. 67:1732–5. DOI: 10.1136/ard.2008.096800. PMID: 18625623.
Article
96. Kucharczyk J, Mintorovitch J, Asgari HS, Moseley M. 1991; Diffusion/perfusion MR imaging of acute cerebral ischemia. Magn Reson Med. 19:311–5. DOI: 10.1002/mrm.1910190220. PMID: 1881320.
Article
97. Bailey DL, Townsend DW, Valk PE, Maisey MN. 2005. Positron emission tomography: basic sciences. Springer-Verlag;Secaucus, NJ: DOI: 10.1007/b136169.
98. Martínez MJ, Ziegler SI, Beyer T. Dresel S, editor. 2008. PET and PET/CT: basic principles and instrumentation. PET in oncology. Springer;Berlin, Heidelberg: DOI: 10.1007/978-3-540-31203-1_1. PMID: 18019613.
Article
99. Fletcher JW, Djulbegovic B, Soares HP, Siegel BA, Lowe VJ, Lyman GH, et al. 2008; Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med. 49:480–508. DOI: 10.2967/jnumed.107.047787. PMID: 18287273.
100. Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T. 1992; Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med. 33:1972–80. PMID: 1432158.
101. Keidar Z, Haim N, Guralnik L, Wollner M, Bar-Shalom R, Ben-Nun A, et al. 2004; PET/CT using 18F-FDG in suspected lung cancer recurrence: diagnostic value and impact on patient management. J Nucl Med. 45:1640–6.
102. Zhuang H, Codreanu I. 2015; Growing applications of FDG PET-CT imaging in non-oncologic conditions. J Biomed Res. 29:189–202. DOI: 10.7555/jbr.29.20140081. PMID: 26060443. PMCID: PMC4449487.
Article
103. Lensen KD, Comans EF, Voskuyl AE, van der Laken CJ, Brouwer E, Zwijnenburg AT, et al. 2015; Large-vessel vasculitis: interobserver agreement and diagnostic accuracy of 18F-FDG-PET/CT. Biomed Res Int. 2015:914692. DOI: 10.1155/2015/914692. PMID: 25695092. PMCID: PMC4324480.
104. Soussan M, Nicolas P, Schramm C, Katsahian S, Pop G, Fain O, et al. 2015; Management of large-vessel vasculitis with FDG-PET: a systematic literature review and meta-analysis. Medicine (Baltimore). 94:e622. DOI: 10.1097/MD.0000000000000622. PMID: 25860208. PMCID: PMC4554050.
105. Bucerius J, Hyafil F, Verberne HJ, Slart RH, Lindner O, Sciagra R, et al. 2016; Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM) on PET imaging of atherosclerosis. Eur J Nucl Med Mol Imaging. 43:780–92. DOI: 10.1007/s00259-015-3259-3. PMID: 26678270. PMCID: PMC4764627.
Article
106. Moosig F, Czech N, Mehl C, Henze E, Zeuner RA, Kneba M, et al. 2004; Correlation between 18-fluorodeoxyglucose accumulation in large vessels and serological markers of inflammation in polymyalgia rheumatica: a quantitative PET study. Ann Rheum Dis. 63:870–3. DOI: 10.1136/ard.2003.011692. PMID: 15194587. PMCID: PMC1755055.
Article
107. Hautzel H, Sander O, Heinzel A, Schneider M, Müller HW. 2008; Assessment of large-vessel involvement in giant cell arteritis with 18F-FDG PET: introducing an ROC-analysis-based cutoff ratio. J Nucl Med. 49:1107–13. DOI: 10.2967/jnumed.108.051920. PMID: 18552151.
108. Tezuka D, Haraguchi G, Ishihara T, Ohigashi H, Inagaki H, Suzuki J, et al. 2012; Role of FDG PET-CT in Takayasu arteritis: sensitive detection of recurrences. JACC Cardiovasc Imaging. 5:422–9. DOI: 10.1016/j.jcmg.2012.01.013. PMID: 22498333.
109. Besson FL, de Boysson H, Parienti JJ, Bouvard G, Bienvenu B, Agostini D. 2014; Towards an optimal semiquantitative approach in giant cell arteritis: an 18F-FDG PET/CT case-control study. Eur J Nucl Med Mol Imaging. 41:155–66. DOI: 10.1007/s00259-013-2545-1. PMID: 24008434.
110. Stellingwerff MD, Brouwer E, Lensen KJ, Rutgers A, Arends S, van der Geest KS, et al. 2015; Different scoring methods of FDG PET/CT in giant cell arteritis: need for standardization. Medicine (Baltimore). 94:e1542. DOI: 10.1097/MD.0000000000001542. PMID: 26376404. PMCID: PMC4635818.
111. Lee YH, Choi SJ, Ji JD, Song GG. 2016; Diagnostic accuracy of 18F-FDG PET or PET/CT for large vessel vasculitis: a meta-analysis. Z Rheumatol. 75:924–31. DOI: 10.1007/s00393-015-1674-2. PMID: 26704559.
112. Grayson PC, Alehashemi S, Bagheri AA, Civelek AC, Cupps TR, Kaplan MJ, et al. 2018; 18F-fluorodeoxyglucose-positron emission tomography as an imaging biomarker in a prospective, longitudinal cohort of patients with large vessel vasculitis. Arthritis Rheumatol. 70:439–49. DOI: 10.1002/art.40379. PMID: 29145713. PMCID: PMC5882488.
113. Kim J, Oh MD. 2015; FDG PET-CT in the diagnosis of Takayasu arteritis presenting as fever of unknown origin: a case report. Infect Chemother. 47:190–3. DOI: 10.3947/ic.2015.47.3.190. PMID: 26483994. PMCID: PMC4607773.
Article
114. Yoo SJ, Lee JC, Kim Y, Yoo IS, Shim SC, Kim KH, et al. 2015; Clinical Implication of 18F-FDG-PET in diagnosing and monitoring disease activity in a case of subclinical stage of giant cell arteritis. J Rheum Dis. 22:382–6. DOI: 10.4078/jrd.2015.22.6.382.
115. de Boysson H, Dumont A, Liozon E, Lambert M, Boutemy J, Maigné G, et al. 2017; Giant-cell arteritis: concordance study between aortic CT angiography and FDG-PET/CT in detection of large-vessel involvement. Eur J Nucl Med Mol Imaging. 44:2274–9. DOI: 10.1007/s00259-017-3774-5. PMID: 28736805.
Article
116. Incerti E, Tombetti E, Fallanca F, Baldissera EM, Alongi P, Tombolini E, et al. 2017; 18F-FDG PET reveals unique features of large vessel inflammation in patients with Takayasu's arteritis. Eur J Nucl Med Mol Imaging. 44:1109–18. DOI: 10.1007/s00259-017-3639-y. PMID: 28180963.
117. Dellavedova L, Carletto M, Faggioli P, Sciascera A, Del Sole A, Mazzone A, et al. 2016; The prognostic value of baseline 18F-FDG PET/CT in steroid-naïve large-vessel vasculitis: introduction of volume-based parameters. Eur J Nucl Med Mol Imaging. 43:340–8. DOI: 10.1007/s00259-015-3148-9. PMID: 26250689.
118. de Leeuw K, Bijl M, Jager PL. 2004; Additional value of positron emission tomography in diagnosis and follow-up of patients with large vessel vasculitides. Clin Exp Rheumatol. 22(6 Suppl 36):S21–6. PMID: 15675130.
119. Stenová E, Mistec S, Povinec P. 2010; FDG-PET/CT in large-vessel vasculitis: its diagnostic and follow-up role. Rheumatol Int. 30:1111–4. DOI: 10.1007/s00296-009-1038-9. PMID: 19588144.
Article
120. Blockmans D, de Ceuninck L, Vanderschueren S, Knockaert D, Mortelmans L, Bobbaers H. 2006; Repetitive 18F-fluorodeoxyglucose positron emission tomography in giant cell arteritis: a prospective study of 35 patients. Arthritis Rheum. 55:131–7. DOI: 10.1002/art.21699. PMID: 16463425.
121. Muto G, Yamashita H, Takahashi Y, Miyata Y, Morooka M, Minamimoto R, et al. 2014; Large vessel vasculitis in elderly patients: early diagnosis and steroid-response evaluation with FDG-PET/CT and contrast-enhanced CT. Rheumatol Int. 34:1545–54. DOI: 10.1007/s00296-014-2985-3. PMID: 24643395.
Article
122. Karunanithi S, Sharma P, Bal C, Kumar R. 2014; 18F-FDG PET/CT for diagnosis and treatment response evaluation in large vessel vasculitis. Eur J Nucl Med Mol Imaging. 41:586–7. DOI: 10.1007/s00259-013-2591-8. PMID: 24196914.
123. Park EH, Lee EY, Lee YJ, Ha YJ, Yoo WH, Choi BY, et al. 2018; Infliximab biosimilar CT-P13 therapy in patients with Takayasu arteritis with low dose of glucocorticoids: a prospective single-arm study. Rheumatol Int. 38:2233–42. DOI: 10.1007/s00296-018-4159-1. PMID: 30229280. PMCID: PMC6223861.
Article
124. Banerjee S, Quinn KA, Gribbons KB, Rosenblum JS, Civelek AC, Novakovich E, et al. 2020; Effect of treatment on imaging, clinical, and serologic assessments of disease activity in large-vessel vasculitis. J Rheumatol. 47:99–107. DOI: 10.3899/jrheum.181222. PMID: 30877209.
Article
125. Choi YW, Jung S, Jung TY, Kim YH, Han DS, Bang SY. 2017; Fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography in diagnosis and assessment of takayasu arteritis and ulcerative colitis. J Rheum Dis. 24:55–9. DOI: 10.4078/jrd.2017.24.1.55.
Article
126. Pelletier-Galarneau M, Ruddy TD. 2019; PET/CT for diagnosis and management of large-vessel vasculitis. Curr Cardiol Rep. 21:34. DOI: 10.1007/s11886-019-1122-z. PMID: 30887249.
Article
127. Blockmans D, De Ceuninck L, Vanderschueren S, Knockaert D, Mortelmans L, Bobbaers H. 2007; Repetitive 18-fluorodeoxyglucose positron emission tomography in isolated polymyalgia rheumatica: a prospective study in 35 patients. Rheumatology (Oxford). 46:672–7. DOI: 10.1093/rheumatology/kel376. PMID: 17114803.
Article
128. Kotani T, Komori T, Kanzaki Y, Takeuchi T, Wakura D, Iimori A, et al. 2011; FDG-PET/CT of polymyalgia rheumatica. Mod Rheumatol. 21:334–6. DOI: 10.3109/s10165-010-0382-7. PMID: 21153039.
Article
129. Yamashita H, Kubota K, Takahashi Y, Minaminoto R, Morooka M, Ito K, et al. 2012; Whole-body fluorodeoxyglucose positron emission tomography/computed tomography in patients with active polymyalgia rheumatica: evidence for distinctive bursitis and large-vessel vasculitis. Mod Rheumatol. 22:705–11. DOI: 10.3109/s10165-011-0581-x. PMID: 22205118.
Article
130. Prieto-Peña D, Martínez-Rodríguez I, Loricera J, Banzo I, Calderón-Goercke M, Calvo-Río V, et al. 2019; Predictors of positive 18F-FDG PET/CT-scan for large vessel vasculitis in patients with persistent polymyalgia rheumatica. Semin Arthritis Rheum. 48:720–7. DOI: 10.1016/j.semarthrit.2018.05.007. PMID: 29903537.
131. Palard-Novello X, Querellou S, Gouillou M, Saraux A, Marhadour T, Garrigues F, et al. 2016; Value of 18F-FDG PET/CT for therapeutic assessment of patients with polymyalgia rheumatica receiving tocilizumab as first-line treatment. Eur J Nucl Med Mol Imaging. 43:773–9. DOI: 10.1007/s00259-015-3287-z. PMID: 26753600.
132. Pipitone N, Versari A, Zuccoli G, Levrini G, Macchioni P, Bajocchi G, et al. 2012; 18F-Fluorodeoxyglucose positron emission tomography for the assessment of myositis: a case series. Clin Exp Rheumatol. 30:570–3.
133. Kim HS, Kim CH, Park YH, Kim WU. 2008; 18Fluorine fluorodeoxyglucose-positron emission tomography/computed tomography in dermatomyositis. Joint Bone Spine. 75:508–10. DOI: 10.1016/j.jbspin.2007.12.002. PMID: 18455467.
134. Ungprasert P, Bethina NK, Jones CH. 2013; Malignancy and idiopathic inflammatory myopathies. N Am J Med Sci. 5:569–72. DOI: 10.4103/1947-2714.120788. PMID: 24350067. PMCID: PMC3842696.
Article
135. Gerfaud-Valentin M, Jamilloux Y, Iwaz J, Sève P. 2014; Adult-onset Still's disease. Autoimmun Rev. 13:708–22. DOI: 10.1016/j.autrev.2014.01.058. PMID: 24657513.
Article
136. Bleeker-Rovers CP, de Kleijn EM, Corstens FH, van der Meer JW, Oyen WJ. 2004; Clinical value of FDG PET in patients with fever of unknown origin and patients suspected of focal infection or inflammation. Eur J Nucl Med Mol Imaging. 31:29–37. DOI: 10.1007/s00259-003-1338-3. PMID: 14551752.
Article
137. Gallamini A, Zwarthoed C, Borra A. 2014; Positron emission tomography (PET) in oncology. Cancers (Basel). 6:1821–89. DOI: 10.3390/cancers6041821. PMID: 25268160. PMCID: PMC4276948.
Article
138. Wang Q, Li YM, Li Y, Hua FC, Wang QS, Zhang XL, et al. 2019; 18F-FDGPET/CT in fever of unknown origin and inflammation of unknown origin: a Chinese multi-center study. Eur J Nucl Med Mol Imaging. 46:159–65. DOI: 10.1007/s00259-018-4121-1. PMID: 30099578.
139. Yamashita H, Kubota K, Takahashi Y, Minamimoto R, Morooka M, Kaneko H, et al. 2014; Clinical value of 18F-fluoro-dexoxyglucose positron emission tomography/computed tomography in patients with adult-onset Still's disease: a seven-case series and review of the literature. Mod Rheumatol. 24:645–50. DOI: 10.3109/14397595.2013.850998. PMID: 24252024.
140. Gerfaud-Valentin M, Maucort-Boulch D, Hot A, Iwaz J, Ninet J, Durieu I, et al. 2014; Adult-onset still disease: manifestations, treatment, outcome, and prognostic factors in 57 patients. Medicine (Baltimore). 93:91–9. DOI: 10.1097/MD.0000000000000021. PMID: 24646465. PMCID: PMC4616309.
141. Dong MJ, Wang CQ, Zhao K, Wang GL, Sun ML, Liu ZF, et al. 2015; 18F-FDG PET/CT in patients with adult-onset Still's disease. Clin Rheumatol. 34:2047–56. DOI: 10.1007/s10067-015-2901-6. PMID: 25711875.
142. An YS, Suh CH, Jung JY, Cho H, Kim HA. 2017; The role of 18F-fluorodeoxyglucose positron emission tomography in the assessment of disease activity of adult-onset Still's disease. Korean J Intern Med. 32:1082–9. DOI: 10.3904/kjim.2015.322. PMID: 27926812. PMCID: PMC5668387.
143. Zhou X, Li Y, Wang Q. 2020; Mar. 16. FDG PET/CT used in identifying adult-onset Still's disease in connective tissue diseases. Clin Rheumatol. [Epub]. DOI: 10.1007/s10067-020-05041-3. DOI: 10.1007/s10067-020-05041-3. PMID: 32180040.
Article
144. Schönau V, Vogel K, Englbrecht M, Wacker J, Schmidt D, Manger B, et al. 2018; The value of 18F-FDG-PET/CT in identifying the cause of fever of unknown origin (FUO) and inflammation of unknown origin (IUO): data from a prospective study. Ann Rheum Dis. 77:70–7. DOI: 10.1136/annrheumdis-2017-211687. PMID: 28928271.
145. Kamisawa T, Zen Y, Pillai S, Stone JH. 2015; IgG4-related disease. Lancet. 385:1460–71. DOI: 10.1016/S0140-6736(14)60720-0. PMID: 25481618.
Article
146. Deshpande V, Zen Y, Chan JK, Yi EE, Sato Y, Yoshino T, et al. 2012; Consensus statement on the pathology of IgG4-related disease. Mod Pathol. 25:1181–92. DOI: 10.1038/modpathol.2012.72. PMID: 22596100.
147. Wallace ZS, Zhang Y, Perugino CA, Naden R, Choi HK, Stone JH, et al. 2019; Clinical phenotypes of IgG4-related disease: an analysis of two international cross-sectional cohorts. Ann Rheum Dis. 78:406–12. DOI: 10.1136/annrheumdis-2018-214603. PMID: 30612117. PMCID: PMC6996288.
Article
148. Zhang J, Chen H, Ma Y, Xiao Y, Niu N, Lin W, et al. 2014; Characterizing IgG4-related disease with 18F-FDG PET/CT: a prospective cohort study. Eur J Nucl Med Mol Imaging. 41:1624–34. DOI: 10.1007/s00259-014-2729-3. PMID: 24764034. PMCID: PMC4089015.
149. Lee J, Hyun SH, Kim S, Kim DK, Lee JK, Moon SH, et al. 2016; Utility of FDG PET/CT for differential diagnosis of patients clinically suspected of IgG4-related disease. Clin Nucl Med. 41:e237–43. DOI: 10.1097/RLU.0000000000001153. PMID: 26914555.
Article
150. Takano K, Yajima R, Kamekura R, Yamamoto M, Takahashi H, Yama N, et al. 2018; Clinical utility of 18F-fluorodeoxyglucose/positron emission tomography in diagnosis of immunoglobulin G4-related sclerosing sialadenitis. Laryngoscope. 128:1120–5. DOI: 10.1002/lary.26945. PMID: 28988418.
151. Cheng MF, Guo YL, Yen RF, Chen YC, Ko CL, Tien YW, et al. 2018; Clinical utility of FDG PET/CT in patients with autoimmune pancreatitis: a case-control study. Sci Rep. 8:3651. DOI: 10.1038/s41598-018-21996-5. PMID: 29483544. PMCID: PMC5827761.
Article
152. Wang Y, Guan Z, Gao D, Luo G, Li K, Zhao Y, et al. 2018; The value of 18F-FDG PET/CT in the distinction between retroperitoneal fibrosis and its malignant mimics. Semin Arthritis Rheum. 47:593–600. DOI: 10.1016/j.semarthrit.2017.07.011. PMID: 28958769.
153. Zhao Z, Wang Y, Guan Z, Jin J, Huang F, Zhu J. 2016; Utility of FDG-PET/CT in the diagnosis of IgG4-related diseases. Clin Exp Rheumatol. 34:119–25.
Full Text Links
  • JRD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr