3. Chaabane C, Otsuka F, Virmani R, Bochaton-Piallat ML. 2013; Biological responses in stented arteries. Cardiovasc Res. 99:353–363. DOI:
10.1093/cvr/cvt115. PMID:
23667187.
Article
4. Won KJ, Jung SH, Lee CK, Na HR, Lee KP, Lee DY, Park ES, Choi WS, Shim SB, Kim B. 2013; DJ-1/park7 protects against neointimal formation via the inhibition of vascular smooth muscle cell growth. Cardiovasc Res. 97:553–561. DOI:
10.1093/cvr/cvs363. PMID:
23230227.
Article
6. Jawien A, Bowen-Pope DF, Lindner V, Schwartz SM, Clowes AW. 1992; Platelet-derived growth factor promotes smooth muscle migration and intimal thickening in a rat model of balloon angioplasty. J Clin Invest. 89:507–511. DOI:
10.1172/JCI115613. PMID:
1531345. PMCID:
PMC442880.
Article
7. Campbell M, Trimble ER. 2005; Modification of PI3K- and MAPK-dependent chemotaxis in aortic vascular smooth muscle cells by protein kinase CbetaII. Circ Res. 96:197–206. DOI:
10.1161/01.RES.0000152966.88353.9d. PMID:
15591231.
8. Moser C, Lang SA, Stoeltzing O. 2009; Heat-shock protein 90 (Hsp90) as a molecular target for therapy of gastrointestinal cancer. Anticancer Res. 29:2031–2042. PMID:
19528462.
10. Zhao Z, Wang Y, Li S, Liu S, Liu Y, Yu Y, Yang F, Xu Z, Wang G. 2019; HSP90 inhibitor 17-DMAG effectively alleviated the progress of thoracic aortic dissection by suppressing smooth muscle cell phenotypic switch. Am J Transl Res. 11:509–518. PMID:
30788006. PMCID:
PMC6357309.
11. Kim J, Jang SW, Park E, Oh M, Park S, Ko J. 2014; The role of heat shock protein 90 in migration and proliferation of vascular smooth muscle cells in the development of atherosclerosis. J Mol Cell Cardiol. 72:157–167. DOI:
10.1016/j.yjmcc.2014.03.008. PMID:
24650873.
Article
12. Okamoto J, Mikami I, Tominaga Y, Kuchenbecker KM, Lin YC, Bravo DT, Clement G, Yagui-Beltran A, Ray MR, Koizumi K, He B, Jablons DM. 2008; Inhibition of Hsp90 leads to cell cycle arrest and apoptosis in human malignant pleural mesothelioma. J Thorac Oncol. 3:1089–1095. DOI:
10.1097/JTO.0b013e3181839693. PMID:
18827603. PMCID:
PMC2656438.
Article
13. Chen Y, Wang X, Cao C, Wang X, Liang S, Peng C, Fu L, He G. 2017; Inhibition of HSP90 sensitizes a novel Raf/ERK dual inhibitor CY-9d in triple-negative breast cancer cells. Oncotarget. 8:104193–104205. DOI:
10.18632/oncotarget.22119. PMID:
29262632. PMCID:
PMC5732798.
Article
14. Baek S, Lee KP, Cui L, Ryu Y, Hong JM, Kim J, Jung SH, Bae YM, Won KJ, Kim B. 2017; Low-power laser irradiation inhibits PDGF-BB-induced migration and proliferation via apoptotic cell death in vascular smooth muscle cells. Lasers Med Sci. 32:2121–2127. DOI:
10.1007/s10103-017-2338-z. PMID:
28983687.
Article
15. Li Y, Zhang T, Schwartz SJ, Sun D. 2009; New developments in Hsp90 inhibitors as anti-cancer therapeutics: mechanisms, clinical perspective and more potential. Drug Resist Updat. 12:17–27. DOI:
10.1016/j.drup.2008.12.002. PMID:
19179103. PMCID:
PMC2692088.
Article
16. Dzau VJ, Braun-Dullaeus RC, Sedding DG. 2002; Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat Med. 8:1249–1256. DOI:
10.1038/nm1102-1249. PMID:
12411952.
Article
17. Kang H, Ahn DH, Pak JH, Seo KH, Baek NI, Jang SW. 2016; Magnobovatol inhibits smooth muscle cell migration by suppressing PDGF-Rβ phosphorylation and inhibiting matrix metalloproteinase-2 expression. Int J Mol Med. 37:1239–1246. DOI:
10.3892/ijmm.2016.2548. PMID:
27049716. PMCID:
PMC4829143.
Article
18. Millette E, Rauch BH, Defawe O, Kenagy RD, Daum G, Clowes AW. 2005; Platelet-derived growth factor-BB-induced human smooth muscle cell proliferation depends on basic FGF release and FGFR-1 activation. Circ Res. 96:172–179. DOI:
10.1161/01.RES.0000154595.87608.db. PMID:
15625285.
Article
19. Raica M, Cimpean AM. 2010; Platelet-derived growth factor (PDGF)/PDGF receptors (PDGFR) axis as target for antitumor and antiangiogenic therapy. Pharmaceuticals (Basel). 3:572–599. DOI:
10.3390/ph3030572. PMID:
27713269. PMCID:
PMC4033970.
Article
23. Porsch H, Mehić M, Olofsson B, Heldin P, Heldin CH. 2014; Platelet-derived growth factor β-receptor, transforming growth factor β type I receptor, and CD44 protein modulate each other's signaling and stability. J Biol Chem. 289:19747–19757. DOI:
10.1074/jbc.M114.547273. PMID:
24860093. PMCID:
PMC4094084.
Article
24. Won KJ, Park SH, Park T, Lee CK, Lee HM, Choi WS, Kim SJ, Park PJ, Jang HK, Kim SH, Kim B. 2008; Cofilin phosphorylation mediates proliferation in response to platelet-derived growth factor-BB in rat aortic smooth muscle cells. J Pharmacol Sci. 108:372–329. DOI:
10.1254/jphs.FP0072354. PMID:
19023180.
Article
25. Namkoong S, Kim CK, Cho YL, Kim JH, Lee H, Ha KS, Choe J, Kim PH, Won MH, Kwon YG, Shim EB, Kim YM. 2009; Forskolin increases angiogenesis through the coordinated cross-talk of PKA-dependent VEGF expression and Epac-mediated PI3K/Akt/eNOS signaling. Cell Signal. 21:906–915. DOI:
10.1016/j.cellsig.2009.01.038. PMID:
19385062.
Article
26. ten Freyhaus H, Huntgeburth M, Wingler K, Schnitker J, Bäumer AT, Vantler M, Bekhite MM, Wartenberg M, Sauer H, Rosenkranz S. 2006; Novel Nox inhibitor VAS2870 attenuates PDGF-dependent smooth muscle cell chemotaxis, but not proliferation. Cardiovasc Res. 71:331–341. DOI:
10.1016/j.cardiores.2006.01.022. PMID:
16545786.
27. Oliveira JSS, Santos GDS, Moraes JA, Saliba AM, Barja-Fidalgo TC, Mattos-Guaraldi AL, Nagao PE. 2018; Reactive oxygen species generation mediated by NADPH oxidase and PI3K/Akt pathways contribute to invasion of Streptococcus agalactiae in human endothelial cells. Mem Inst Oswaldo Cruz. 113:e140421. DOI:
10.1590/0074-02760170421. PMID:
29641644. PMCID:
PMC5887998.
Article
28. Nguyen Thi PA, Chen MH, Li N, Zhuo XJ, Xie L. 2016; PD98059 protects brain against cells death resulting from ROS/ERK activation in a cardiac arrest rat model. Oxid Med Cell Longev. 2016:3723762. DOI:
10.1155/2016/3723762. PMID:
27069530. PMCID:
PMC4812463.
Article