Korean J Physiol Pharmacol.  2020 May;24(3):213-221. 10.4196/kjpp.2020.24.3.213.

Salvianolic acid B ameliorates psoriatic changes in imiquimodinduced psoriasis on BALB/c mice by inhibiting inflammatory and keratin markers via altering phosphatidylinositol-3-kinase/ protein kinase B signaling pathway

Affiliations
  • 1Department of Dermatology, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430000, China

Abstract

Salvianolic acid B (SAB) is an active phytocomponent of a popular Chinese herb called Radix Salvia militiorrhiza with numerous biological properties. The anti-psoriasis activity of SAB was examined by evaluating various psoriasis inflammatory and keratin markers against imiquimod (IMQ)-induced psoriasis on BALB/c mice. Totally 50 healthy BALB/c mice were evenly divided into 5 groups including control, drug control (SAB; 40 mg/kg), IMQ-induced psoriasis (5%), IMQ exposure and treated with SAB (40 mg/kg), or standard methotrexate (MTX; 1 mg/kg). Mice supplemented with either SAB or MTX significantly lowered the values of psoriasis area severity index (PASI), erythema, scaling, skin thickness, inflammatory markers (interleukin [IL]- 22/23/17A/1β/6) and lipid peroxidation product (malondialdehyde). Also, IMQ exposed BALB/c mice treated with SAB or MTX display lesser histopathological changes with enhanced antioxidant activities (catalase, superoxide dismutase). Moreover, the protein expression of keratin markers (K16 and K17) and phosphatidylinositol- 3-kinase (PI3K)/protein kinase B (Akt) signaling proteins (pAkt/Akt and pPI3K/PI3K) were significantly downregulated after administration with SAB and MTX as compared with IMQ induced mice. Taking together, SAB and MTX significantly ameliorate psoriatic changes by inhibiting psoriatic inflammatory and keratin markers through abolishing PI3K/Akt signaling pathway. However, further studies (clinical trials) are needed to confirm the anti-psoriatic property of SAB before recommending to psoriasis patients.

Keyword

Inflammatory markers; Keratin markers; PASI; PI3K/Akt signaling pathway; Salvianolic acid B

Figure

  • Fig. 1 Illustrate the skin PASI (A), scaling (B), erythema (C) and thickness (D) (only on 8th day) in control and IMQ-induced mice. Values are expressed as the mean ± standard deviation. IMQ, imiquimod; SAB, salvianolic acid B; MTX, methotrexate; PASI, psoriasis area severity index. p-value (#p < 0.05, *p < 0.01): where ‘a’ denotes the comparison between IMQ vs. Control, ‘b’ denotes the comparison between IMQ + SAB vs. IMQ, ‘c’ denotes the comparison between IMQ + MTX vs. IMQ, ‘d’ denotes the comparison between IMQ + SAB vs. IMQ + MTX.

  • Fig. 2 Illustrate the protein expression of skin keratin markers (K16 and K17) in control and IMQ-induced mice. Values are expressed as the mean ± standard deviation. IMQ, imiquimod; SAB, salvianolic acid B; MTX, methotrexate; K16 and K17, keratin 16/17. p-value (#p < 0.05, *p < 0.01): where ‘a’ denotes the comparison between IMQ vs. Control, ‘b’ denotes the comparison between IMQ + SAB vs. IMQ, ‘c’ denotes the comparison between IMQ + MTX vs. IMQ, ‘d’ denotes the comparison between IMQ + SAB vs. IMQ + MTX.

  • Fig. 3 Illustrate the protein expression of skin PI3K/Akt signaling molecules in control and IMQ-induced mice. Values are expressed as the mean ± standard deviation. IMQ, imiquimod; SAB, salvianolic acid B; MTX, methotrexate; PI3K, phosphatidylinositol-3-kinase; Akt: protein kinase B. p-value (#p < 0.05, *p < 0.01): where ‘a’ denotes the comparison between IMQ vs. Control, ‘b’ denotes the comparison between IMQ + SAB vs. IMQ, ‘c’ denotes the comparison between IMQ + MTX vs. IMQ, ‘d’ denotes the comparison between IMQ + SAB vs. IMQ + MTX.

  • Fig. 4 Illustrates the histopathological changes in dermal tissue upon staining with H&E (100× magnification) in control and IMQ-induced mice. Control (A) and SAB (B) mice dermal tissue slide display normal smoother epidermis without any inflammation or lesion. The IMQ induced mice dermal section (C) showed thickened epidermis (hyperplasia and acanthosis-circle) with elevated immune cell infiltration (arrow mark). Nevertheless, the mice dermal section treated with SAB (D) and MTX (E) portrait lesser thick epidermis (circle) with decreased immune cell infiltration (arrow mark) than IMQ-induced mice section. Scale bar:100 μm. IMQ, imiquimod; SAB, salvianolic acid B.


Reference

1. Chen HH, Chao YH, Chen DY, Yang DH, Chung TW, Li YR, Lin CC. 2016; Oral administration of acarbose ameliorates imiquimod-induced psoriasis-like dermatitis in a mouse model. Int Immunopharmacol. 33:70–82. DOI: 10.1016/j.intimp.2016.02.001. PMID: 26874324.
Article
2. Mahajan R, Handa S. 2013; Pathophysiology of psoriasis. Indian J Dermatol Venereol Leprol. 79(Suppl 7):S1–9. DOI: 10.4103/0378-6323.115505. PMID: 23974689.
Article
3. Alharbi T, Alzahrani A, Hakami A, Almohammadi A, Alsaadi A, Magbel NB, AlJuaid N, Almasoudi H, Alruwaili T, Alkhezzi S. 2018; Psoriasis pathophysiology and impact on life. Int J Commun Med Public Health. 5:3663–3667. DOI: 10.18203/2394-6040.ijcmph20183383.
Article
4. Conrad C, Gilliet M. 2018; Psoriasis: from pathogenesis to targeted therapies. Clin Rev Allergy Immunol. 54:102–113. DOI: 10.1007/s12016-018-8668-1. PMID: 29349534.
Article
5. Lowes MA, Bowcock AM, Krueger JG. 2007; Pathogenesis and therapy of psoriasis. Nature. 445:866–873. DOI: 10.1038/nature05663. PMID: 17314973.
Article
6. Li Y, Zhang G, Chen M, Tong M, Zhao M, Tang F, Xiao R, Wen H. 2019; Rutaecarpine inhibited imiquimod-induced psoriasis-like dermatitis via inhibiting the NF-κB and TLR7 pathways in mice. Biomed Pharmacother. 109:1876–1883. DOI: 10.1016/j.biopha.2018.10.062. PMID: 30551443.
Article
7. Krueger JG, Ferris LK, Menter A, Wagner F, White A, Visvanathan S, Lalovic B, Aslanyan S, Wang EE, Hall D, Solinger A, Padula S, Scholl P. 2015; Anti-IL-23A mAb BI 655066 for treatment of moderate-to-severe psoriasis: Safety, efficacy, pharmacokinetics, and biomarker results of a single-rising-dose, randomized, double-blind, placebo-controlled trial. J Allergy Clin Immunol. 136:116–124.e7. DOI: 10.1016/j.jaci.2015.01.018. PMID: 25769911.
Article
8. Cline A, Hill D, Lewallen R, Feldman SR. 2016; Current status and future prospects for biologic treatments of psoriasis. Exp Review Clin Immunol. 12:1273–1287. DOI: 10.1080/1744666X.2016.1202115. PMID: 27327580.
Article
9. Talbott W, Duffy N. 2015; Complementary and alternative medicine for psoriasis: what the dermatologist needs to know. Am J Clin Dermatol. 16:147–165. DOI: 10.1007/s40257-015-0128-6. PMID: 25904522.
Article
10. Farahnik B, Sharma D, Alban J, Sivamani RK. 2017; Topical botanical agents for the treatment of psoriasis: a systematic review. Am J Clin Dermatol. 18:451–468. DOI: 10.1007/s40257-017-0266-0. PMID: 28289986.
Article
11. Liu QS, Luo XY, Jiang H, Xing Y, Yang MH, Yuan GH, Tang Z, Wang H. 2015; Salvia miltiorrhiza injection restores apoptosis of fibroblast-like synoviocytes cultured with serum from patients with rheumatoid arthritis. Mol Med Rep. 11:1476–1482. DOI: 10.3892/mmr.2014.2779. PMID: 25352238.
Article
12. Fan Y, Luo Q, Wei J, Lin R, Lin L, Li Y, Chen Z, Lin W, Chen Q. 2018; Mechanism of salvianolic acid B neuroprotection against ischemia/reperfusion induced cerebral injury. Brain Res. 1679:125–133. DOI: 10.1016/j.brainres.2017.11.027. PMID: 29180227.
Article
13. Wei J, Wu J, Xu W, Nie H, Zhou R, Wang R, Liu Y, Tang G, Wu J. 2018; Salvianolic acid B inhibits glycolysis in oral squamous cell carcinoma via targeting PI3K/AKT/HIF-1α signaling pathway. Cell Death Dis. 9:599. DOI: 10.1038/s41419-018-0623-9. PMID: 29789538. PMCID: PMC5964095.
Article
14. Ma ZG, Xia HQ, Cui SL, Yu J. 2017; Attenuation of renal ischemic reperfusion injury by salvianolic acid B via suppressing oxidative stress and inflammation through PI3K/Akt signaling pathway. Braz J Med Biol Res. 50:e5954. DOI: 10.1590/1414-431x20175954. PMID: 28513773. PMCID: PMC5479385.
Article
15. Xia ZB, Yuan YJ, Zhang QH, Li H, Dai JL, Min JK. 2018; Salvianolic Acid B Suppresses Inflammatory Mediator Levels by Downregulating NF-κB in a Rat Model of Rheumatoid Arthritis. Med Sci Monit. 24:2524–2532. DOI: 10.12659/MSM.907084. PMID: 29691361. PMCID: PMC5939601.
Article
16. Chen YS, Lee SM, Lin YJ, Chiang SH, Lin CC. 2014; Effects of Danshensu and Salvianolic Acid B from Salvia miltiorrhiza Bunge (Lamiaceae) on cell proliferation and collagen and melanin production. Molecules. 19:2029–2041. DOI: 10.3390/molecules19022029. PMID: 24531218. PMCID: PMC6271020.
Article
17. El Malki K, Karbach SH, Huppert J, Zayoud M, Reissig S, Schüler R, Nikolaev A, Karram K, Münzel T, Kuhlmann CR, Luhmann HJ, von Stebut E, Wörtge S, Kurschus FC, Waisman A. 2013; An alternative pathway of imiquimod-induced psoriasis-like skin inflammation in the absence of interleukin-17 receptor a signaling. J Invest Dermatol. 133:441–451. DOI: 10.1038/jid.2012.318. PMID: 22951726.
Article
18. Zhang S, Liu X, Mei L, Wang H, Fang F. 2016; Epigallocatechin-3-gallate (EGCG) inhibits imiquimod-induced psoriasis-like inflammation of BALB/c mice. BMC Complement Altern Med. 16:334. DOI: 10.1186/s12906-016-1325-4. PMID: 27581210. PMCID: PMC5007807.
Article
19. Zhang Q, Hu LQ, Li HQ, Wu J, Bian NN, Yan G. 2019; Beneficial effects of andrographolide in a rat model of autoimmune myocarditis and its effects on PI3K/Akt pathway. Korean J Physiol Pharmacol. 23:103–111. DOI: 10.4196/kjpp.2019.23.2.103. PMID: 30820154. PMCID: PMC6384199.
Article
20. Elmore SA. 2006; Enhanced histopathology of the spleen. Toxicol Pathol. 34:648–655. DOI: 10.1080/01926230600865523. PMID: 17067950. PMCID: PMC1828535.
Article
21. Lin X, Huang T. 2016; Oxidative stress in psoriasis and potential therapeutic use of antioxidants. Free Radic Res. 50:585–595. DOI: 10.3109/10715762.2016.1162301. PMID: 27098416.
Article
22. Zhou Q, Mrowietz U, Rostami-Yazdi M. 20091; Oxidative stress in the pathogenesis of psoriasis. Free Radic Biol Med. 47:891–905. DOI: 10.1016/j.freeradbiomed.2009.06.033. PMID: 19577640.
Article
23. Jiang YF, Liu ZQ, Cui W, Zhang WT, Gong JP, Wang XM, Zhang Y, Yang MJ. 2015; Antioxidant effect of salvianolic acid B on hippocampal CA1 neurons in mice with cerebral ischemia and reperfusion injury. Chin J Integr Med. 21:516–522. DOI: 10.1007/s11655-014-1791-1. PMID: 25081897.
Article
24. Zhao GR, Zhang HM, Ye TX, Xiang ZJ, Yuan YJ, Guo ZX, Zhao LB. 2008; Characterization of the radical scavenging and antioxidant activities of danshensu and salvianolic acid B. Food Chem Toxicol. 46:73–81. DOI: 10.1016/j.fct.2007.06.034. PMID: 17719161.
Article
25. Zhang HS, Wang SQ. 2006; Salvianolic acid B from Salvia miltiorrhiza inhibits tumor necrosis factor-alpha (TNF-alpha)-induced MMP-2 upregulation in human aortic smooth muscle cells via suppression of NAD(P)H oxidase-derived reactive oxygen species. J Mol Cell Cardiol. 41:138–148. DOI: 10.1016/j.yjmcc.2006.03.007. PMID: 16713603.
26. Jin L, Wang G. 2014; Keratin 17: a critical player in the pathogenesis of psoriasis. Med Res Rev. 34:438–454. DOI: 10.1002/med.21291. PMID: 23722817.
Article
27. Leigh IM, Navsaria H, Purkis PE, McKay IA, Bowden PE, Riddle PN. 1995; Keratins (K16 and K17) as markers of keratinocyte hyperproliferation in psoriasis in vivo and in vitro. Br J Dermatol. 133:501–511. DOI: 10.1111/j.1365-2133.1995.tb02696.x. PMID: 7577575.
28. Zhang W, Dang E, Shi X, Jin L, Feng Z, Hu L, Wu Y, Wang G. 2012; The pro-inflammatory cytokine IL-22 up-regulates keratin 17 expression in keratinocytes via STAT3 and ERK1/2. PLoS One. 7:e40797. DOI: 10.1371/journal.pone.0040797. PMID: 22808266. PMCID: PMC3396590.
Article
29. Yang L, Fan X, Cui T, Dang E, Wang G. 2017; Nrf2 promotes keratinocyte proliferation in psoriasis through up-regulation of keratin 6, keratin 16, and keratin 17. J Invest Dermatol. 137:2168–2176. DOI: 10.1016/j.jid.2017.05.015. PMID: 28576737.
Article
30. Du ZC, Xue T, Jiang M, Lu HY, Ye ZC, Ruan BJ, Xu CM, Jiang YH, Wei M, Wang G, Lu ZF, Lei XY, Wang L. 2016; Arctigenin attenuates imiquimod-induced psoriasis-like skin lesions via down-regulating keratin17. Int J Clin Exp Med. 9:1639–1647.
31. Zhang J, Li X, Wei J, Chen H, Lu Y, Li L, Han L, Lu C. 2018; Gallic acid inhibits the expression of keratin 16 and keratin 17 through Nrf2 in psoriasis-like skin disease. Int Immunopharmacol. 65:84–95. DOI: 10.1016/j.intimp.2018.09.048. PMID: 30293051.
Article
32. Dogra S, Mahajan R. 2013; Systemic methotrexate therapy for psoriasis: past, present and future. Clin Exp Dermatol. 38:573–588. DOI: 10.1111/ced.12062. PMID: 23837932.
Article
33. Zhang M, Zhang X. 2019; The role of PI3K/AKT/FOXO signaling in psoriasis. Arch Dermatol Res. 311:83–91. DOI: 10.1007/s00403-018-1879-8. PMID: 30483877.
Article
34. Chamcheu JC, Adhami VM, Esnault S, Sechi M, Siddiqui IA, Satyshur KA, Syed DN, Dodwad SM, Chaves-Rodriquez MI, Longley BJ, Wood GS, Mukhtar H. 2017; Dual inhibition of PI3K/Akt and mTOR by the dietary antioxidant, delphinidin, ameliorates psoriatic features in vitro and in an imiquimod-induced psoriasis-like disease in mice. Antioxid Redox Signal. 26:49–69. DOI: 10.1089/ars.2016.6769. PMID: 27393705. PMCID: PMC5206770.
Article
35. Chamcheu JC, Chaves-Rodriquez MI, Adhami VM, Siddiqui IA, Wood GS, Longley BJ, Mukhtar H. 2016; Upregulation of PI3K/AKT/mTOR, FABP5 and PPARβ/δ in human psoriasis and imiquimod-induced murine psoriasiform dermatitis model. Acta Derm Venereol. 96:854–856. DOI: 10.2340/00015555-2359. PMID: 26833029. PMCID: PMC5540143.
Article
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr