Diabetes Metab J.  2020 Apr;44(2):295-306. 10.4093/dmj.2019.0020.

Multiple Biomarkers Improved Prediction for the Risk of Type 2 Diabetes Mellitus in Singapore Chinese Men and Women

Affiliations
  • 1Health Services and Systems Research, Duke-NUS Medical School, Singapore
  • 2Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
  • 3UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA
  • 4Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
  • 5Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

Abstract

Background
Multiple biomarkers have performed well in predicting type 2 diabetes mellitus (T2DM) risk in Western populations. However, evidence is scarce among Asian populations.
Methods
Plasma triglyceride-to-high density lipoprotein (TG-to-HDL) ratio, alanine transaminase (ALT), high-sensitivity Creactive protein (hs-CRP), ferritin, adiponectin, fetuin-A, and retinol-binding protein 4 were measured in 485 T2DM cases and 485 age-and-sex matched controls nested within the prospective Singapore Chinese Health Study cohort. Participants were free of T2DM at blood collection (1999 to 2004), and T2DM cases were identified at the subsequent follow-up interviews (2006 to 2010). A weighted biomarker score was created based on the strengths of associations between these biomarkers and T2DM risks. The predictive utility of the biomarker score was assessed by the area under receiver operating characteristics curve (AUC).
Results
The biomarker score that comprised of four biomarkers (TG-to-HDL ratio, ALT, ferritin, and adiponectin) was positively associated with T2DM risk (P trend <0.001). Compared to the lowest quartile of the score, the odds ratio was 12.0 (95% confidence interval [CI], 5.43 to 26.6) for those in the highest quartile. Adding the biomarker score to a base model that included smoking, history of hypertension, body mass index, and levels of random glucose and insulin improved AUC significantly from 0.81 (95% CI, 0.78 to 0.83) to 0.83 (95% CI, 0.81 to 0.86; P=0.002). When substituting the random glucose levels with glycosylated hemoglobin in the base model, adding the biomarker score improved AUC from 0.85 (95% CI, 0.83 to 0.88) to 0.86 (95% CI, 0.84 to 0.89; P=0.032).
Conclusion
A composite score of blood biomarkers improved T2DM risk prediction among Chinese.

Keyword

Biomarkers; Case-control studies; Diabetes mellitus, type 2; Epidemiology; Prognosis

Figure

  • Fig. 1 Odds ratio for type 2 diabetes mellitus by the biomarker score and percentages of participants in each biomarker score category. The solid line represents the point estimates of relative risk for the association between the biomarker score and the risk of incident type 2 diabetes mellitus using conditional logistic regression model after adjustment for age at blood taken (years), smoking (never, ever smoker), alcohol intake (never, weekly, or daily), weekly activity (<0.5, 0.5 to 3, and ≥4 hr/wk), education level (primary school and below, secondary or above), history of hypertension (yes, no), body mass index (kg/m2), fasting status (yes, no), and levels of random glucose and random insulin, and the dotted lines represent the upper and lower bound of 95% confidence interval (CI). The light grey bars represent the percentage of controls within each category for the biomarker score (n=485), and the dark grey bars represent the percentage of cases within each category for the biomarker score (n=485).


Cited by  1 articles

Biomarker Score in Risk Prediction: Beyond Scientific Evidence and Statistical Performance
Heejung Bang
Diabetes Metab J. 2020;44(2):245-247.    doi: 10.4093/dmj.2020.0073.


Reference

1. Chan JC, Malik V, Jia W, Kadowaki T, Yajnik CS, Yoon KH, Hu FB. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA. 2009; 301:2129–2140. PMID: 19470990.
2. International Diabetes Federation. IDF Diabetes Atlas. 8th ed. Brussels: International Diabetes Federation;2017.
3. Holman N, Young B, Gadsby R. Current prevalence of type 1 and type 2 diabetes in adults and children in the UK. Diabet Med. 2015; 32:1119–1120. PMID: 25962518.
Article
4. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM. Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002; 346:393–403. PMID: 11832527.
Article
5. Pan XR, Li GW, Hu YH, Wang JX, Yang WY, An ZX, Hu ZX, Lin J, Xiao JZ, Cao HB, Liu PA, Jiang XG, Jiang YY, Wang JP, Zheng H, Zhang H, Bennett PH, Howard BV. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care. 1997; 20:537–544. PMID: 9096977.
Article
6. Meigs JB. Multiple biomarker prediction of type 2 diabetes. Diabetes Care. 2009; 32:1346–1348. PMID: 19564478.
Article
7. Meigs JB, Wilson PW, Fox CS, Vasan RS, Nathan DM, Sullivan LM, D'Agostino RB. Body mass index, metabolic syndrome, and risk of type 2 diabetes or cardiovascular disease. J Clin Endocrinol Metab. 2006; 91:2906–2912. PMID: 16735483.
Article
8. Meigs JB, Shrader P, Sullivan LM, McAteer JB, Fox CS, Dupuis J, Manning AK, Florez JC, Wilson PW, D'Agostino RB Sr, Cupples LA. Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med. 2008; 359:2208–2219. PMID: 19020323.
Article
9. Talmud PJ, Cooper JA, Morris RW, Dudbridge F, Shah T, Engmann J, Dale C, White J, McLachlan S, Zabaneh D, Wong A, Ong KK, Gaunt T, Holmes MV, Lawlor DA, Richards M, Hardy R, Kuh D, Wareham N, Langenberg C, Ben-Shlomo Y, Wannamethee SG, Strachan MW, Kumari M, Whittaker JC, Drenos F, Kivimaki M, Hingorani AD, Price JF, Humphries SE. UCLEB Consortium. Sixty-five common genetic variants and prediction of type 2 diabetes. Diabetes. 2015; 64:1830–1840. PMID: 25475436.
Article
10. Wong TY, Liew G, Tapp RJ, Schmidt MI, Wang JJ, Mitchell P, Klein R, Klein BE, Zimmet P, Shaw J. Relation between fasting glucose and retinopathy for diagnosis of diabetes: three population-based cross-sectional studies. Lancet. 2008; 371:736–743. PMID: 18313502.
Article
11. Kolberg JA, Jorgensen T, Gerwien RW, Hamren S, McKenna MP, Moler E, Rowe MW, Urdea MS, Xu XM, Hansen T, Pedersen O, Borch-Johnsen K. Development of a type 2 diabetes risk model from a panel of serum biomarkers from the Inter99 cohort. Diabetes Care. 2009; 32:1207–1212. PMID: 19564473.
Article
12. Unger RH. Minireview: weapons of lean body mass destruction: the role of ectopic lipids in the metabolic syndrome. Endocrinology. 2003; 144:5159–5165. PMID: 12960011.
Article
13. Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol. 2008; 9:367–377. PMID: 18401346.
Article
14. Li N, Fu J, Koonen DP, Kuivenhoven JA, Snieder H, Hofker MH. Are hypertriglyceridemia and low HDL causal factors in the development of insulin resistance? Atherosclerosis. 2014; 233:130–138. PMID: 24529133.
Article
15. Cefalu WT. Inflammation, insulin resistance, and type 2 diabetes: back to the future? Diabetes. 2009; 58:307–308. PMID: 19171748.
Article
16. Haap M, Machann J, von Friedeburg C, Schick F, Stefan N, Schwenzer NF, Fritsche A, Haring HU, Thamer C. Insulin sensitivity and liver fat: role of iron load. J Clin Endocrinol Metab. 2011; 96:E958–E961. PMID: 21430023.
Article
17. Kunutsor SK, Apekey TA, Walley J. Liver aminotransferases and risk of incident type 2 diabetes: a systematic review and meta-analysis. Am J Epidemiol. 2013; 178:159–171. PMID: 23729682.
Article
18. Guo VY, Cao B, Cai C, Cheng KK, Cheung BMY. Fetuin-A levels and risk of type 2 diabetes mellitus: a systematic review and meta-analysis. Acta Diabetol. 2018; 55:87–98. PMID: 29127490.
Article
19. Luft VC, Pereira M, Pankow JS, Ballantyne C, Couper D, Heiss G, Duncan BB. ARIC Investigators. Retinol binding protein 4 and incident diabetes: the Atherosclerosis Risk in Communities Study (ARIC Study). Rev Bras Epidemiol. 2013; 16:388–397. PMID: 24142010.
20. Sun L, Qi Q, Zong G, Ye X, Li H, Liu X, Zheng H, Hu FB, Liu Y, Lin X. Elevated plasma retinol-binding protein 4 is associated with increased risk of type 2 diabetes in middle-aged and elderly Chinese adults. J Nutr. 2014; 144:722–728. PMID: 24647386.
Article
21. Li S, Shin HJ, Ding EL, van Dam RM. Adiponectin levels and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA. 2009; 302:179–188. PMID: 19584347.
Article
22. Chien K, Cai T, Hsu H, Su T, Chang W, Chen M, Lee Y, Hu FB. A prediction model for type 2 diabetes risk among Chinese people. Diabetologia. 2009; 52:443–450. PMID: 19057891.
Article
23. Wilson PW, Meigs JB, Sullivan L, Fox CS, Nathan DM, D'Agostino RB Sr. Prediction of incident diabetes mellitus in middle-aged adults: the Framingham Offspring Study. Arch Intern Med. 2007; 167:1068–1074. PMID: 17533210.
24. Wang X, Bao W, Liu J, Ouyang YY, Wang D, Rong S, Xiao X, Shan ZL, Zhang Y, Yao P, Liu LG. Inflammatory markers and risk of type 2 diabetes: a systematic review and meta-analysis. Diabetes Care. 2013; 36:166–175. PMID: 23264288.
Article
25. Sun L, Zong G, Pan A, Ye X, Li H, Yu Z, Zhao Y, Zou S, Yu D, Jin Q, Hu FB, Lin X. Elevated plasma ferritin is associated with increased incidence of type 2 diabetes in middle-aged and elderly Chinese adults. J Nutr. 2013; 143:1459–1465. PMID: 23902953.
Article
26. Schulze MB, Weikert C, Pischon T, Bergmann MM, Al-Hasani H, Schleicher E, Fritsche A, Haring HU, Boeing H, Joost HG. Use of multiple metabolic and genetic markers to improve the prediction of type 2 diabetes: the EPIC-Potsdam Study. Diabetes Care. 2009; 32:2116–2119. PMID: 19720844.
Article
27. Herder C, Baumert J, Zierer A, Roden M, Meisinger C, Karakas M, Chambless L, Rathmann W, Peters A, Koenig W, Thorand B. Immunological and cardiometabolic risk factors in the prediction of type 2 diabetes and coronary events: MONICA/KORA Augsburg case-cohort study. PLoS One. 2011; 6:e19852. PMID: 21674000.
Article
28. Marques-Vidal P, Schmid R, Bochud M, Bastardot F, von Kanel R, Paccaud F, Glaus J, Preisig M, Waeber G, Vollenweider P. Adipocytokines, hepatic and inflammatory biomarkers and incidence of type 2 diabetes. the CoLaus study. PLoS One. 2012; 7:e51768. PMID: 23251619.
Article
29. Julia C, Czernichow S, Charnaux N, Ahluwalia N, Andreeva V, Touvier M, Galan P, Fezeu L. Relationships between adipokines, biomarkers of endothelial function and inflammation and risk of type 2 diabetes. Diabetes Res Clin Pract. 2014; 105:231–238. PMID: 24931702.
Article
30. Salomaa V, Havulinna A, Saarela O, Zeller T, Jousilahti P, Jula A, Muenzel T, Aromaa A, Evans A, Kuulasmaa K, Blankenberg S. Thirty-one novel biomarkers as predictors for clinically incident diabetes. PLoS One. 2010; 5:e10100. PMID: 20396381.
Article
31. Raynor LA, Pankow JS, Duncan BB, Schmidt MI, Hoogeveen RC, Pereira MA, Young JH, Ballantyne CM. Novel risk factors and the prediction of type 2 diabetes in the Atherosclerosis Risk in Communities (ARIC) study. Diabetes Care. 2013; 36:70–76. PMID: 22933437.
Article
32. Wu H, Yu Z, Qi Q, Li H, Sun Q, Lin X. Joint analysis of multiple biomarkers for identifying type 2 diabetes in middle-aged and older Chinese: a cross-sectional study. BMJ Open. 2011; 1:e000191.
Article
33. Chan JC, Yeung R, Luk A. The Asian diabetes phenotypes: challenges and opportunities. Diabetes Res Clin Pract. 2014; 105:135–139. PMID: 24947419.
Article
34. Hankin JH, Stram DO, Arakawa K, Park S, Low SH, Lee HP, Yu MC. Singapore Chinese Health Study: development, validation, and calibration of the quantitative food frequency questionnaire. Nutr Cancer. 2001; 39:187–195. PMID: 11759279.
Article
35. Odegaard AO, Pereira MA, Koh WP, Arakawa K, Lee HP, Yu MC. Coffee, tea, and incident type 2 diabetes: the Singapore Chinese Health Study. Am J Clin Nutr. 2008; 88:979–985. PMID: 18842784.
Article
36. Lin X, Song K, Lim N, Yuan X, Johnson T, Abderrahmani A, Vollenweider P, Stirnadel H, Sundseth SS, Lai E, Burns DK, Middleton LT, Roses AD, Matthews PM, Waeber G, Cardon L, Waterworth DM, Mooser V. Risk prediction of prevalent diabetes in a Swiss population using a weighted genetic score: the CoLaus Study. Diabetologia. 2009; 52:600–608. PMID: 19139842.
37. De Jager PL, Chibnik LB, Cui J, Reischl J, Lehr S, Simon KC, Aubin C, Bauer D, Heubach JF, Sandbrink R, Tyblova M, Lelkova P, Havrdova E, Pohl C, Horakova D, Ascherio A, Hafler DA, Karlson EW. Steering committee of the BENEFIT study. Steering committee of the BEYOND study. Steering committee of the LTF study. Steering committee of the CCR1 study. Integration of genetic risk factors into a clinical algorithm for multiple sclerosis susceptibility: a weighted genetic risk score. Lancet Neurol. 2009; 8:1111–1119. PMID: 19879194.
Article
38. Daniels B. CROSSFOLD: Stata module to perform k-fold cross-validation. Boston: Boston College Department of Economics;2012.
39. Selvin E, Steffes MW, Zhu H, Matsushita K, Wagenknecht L, Pankow J, Coresh J, Brancati FL. Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. N Engl J Med. 2010; 362:800–811. PMID: 20200384.
Article
40. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988; 44:837–845. PMID: 3203132.
Article
41. Pencina MJ, D'Agostino RB Sr, D'Agostino RB Jr, Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. 2008; 27:157–172. PMID: 17569110.
Article
42. Pencina MJ, D'Agostino RB Sr, Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med. 2011; 30:11–21. PMID: 21204120.
Article
43. Luo S, Han L, Zeng P, Chen F, Pan L, Wang S, Zhang T. A risk assessment model for type 2 diabetes in Chinese. PLoS One. 2014; 9:e104046. PMID: 25101994.
Article
44. Wang A, Chen G, Su Z, Liu X, Liu X, Li H, Luo Y, Tao L, Guo J, Liu L, Chen S, Wu S, Guo X. Risk scores for predicting incidence of type 2 diabetes in the Chinese population: the Kailuan prospective study. Sci Rep. 2016; 6:26548. PMID: 27221651.
Article
45. Lim NK, Park SH, Choi SJ, Lee KS, Park HY. A risk score for predicting the incidence of type 2 diabetes in a middle-aged Korean cohort: the Korean genome and epidemiology study. Circ J. 2012; 76:1904–1910. PMID: 22640983.
46. Ha KH, Lee YH, Song SO, Lee JW, Kim DW, Cho KH, Kim DJ. Development and validation of the Korean diabetes risk score: a 10-year national cohort study. Diabetes Metab J. 2018; 42:402–414. PMID: 30113144.
Article
47. Kwon H, Pessin JE. Adipokines mediate inflammation and insulin resistance. Front Endocrinol (Lausanne). 2013; 4:71. PMID: 23781214.
Article
48. Ballestri S, Zona S, Targher G, Romagnoli D, Baldelli E, Nascimbeni F, Roverato A, Guaraldi G, Lonardo A. Nonalcoholic fatty liver disease is associated with an almost twofold increased risk of incident type 2 diabetes and metabolic syndrome. Evidence from a systematic review and meta-analysis. J Gastroenterol Hepatol. 2016; 31:936–944. PMID: 26667191.
Article
49. Vozarova B, Stefan N, Lindsay RS, Saremi A, Pratley RE, Bogardus C, Tataranni PA. High alanine aminotransferase is associated with decreased hepatic insulin sensitivity and predicts the development of type 2 diabetes. Diabetes. 2002; 51:1889–1895. PMID: 12031978.
Article
50. Sullivan SD, Garrison LP Jr, Rinde H, Kolberg J, Moler EJ. Cost-effectiveness of risk stratification for preventing type 2 diabetes using a multi-marker diabetes risk score. J Med Econ. 2011; 14:609–616. PMID: 21740291.
Article
Full Text Links
  • DMJ
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr