Int J Thyroidol.  2020 May;13(1):1-12. 10.11106/ijt.2020.13.1.1.

The Significance of Transcriptomic Signatures in the Multifocal Papillary Thyroid Carcinoma: Two mRNA Expression Patterns with Distinctive Clinical Behavior from The Cancer Genome Atlas (TCGA) Database

Affiliations
  • 1Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Korea
  • 2Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Korea
  • 3Daejeon, Department of Otolaryngology-Head and Neck Surgery, Hallym University College of Medicine, Seoul, Korea

Abstract

Background and Objectives
The association between multifocal papillary thyroid carcinoma (PTC) and tumor aggressiveness remains controversial. The aim of study is to evaluate molecular subtypes of multifocal PTCs using multiplatform genomic analysis.
Materials and Methods
Statistical analysis and genomic analysis were performed for gene expression data and clinical data of multifocal PTCs in The Cancer Genome Atlas data. Clinicopathologic findings, recurrence-free survival (RFS), copy number alteration and somatic mutation status in patients in relation to molecular subtypes were analyzed.
Results
Multiplatform genomic analysis revealed that multifocal PTCs (n=226) were divided into two distinct molecular subgroups. Participants in cluster 2 showed significantly increased risk of extrathyroidal extension, lymph node metastasis, and BRAFV600E mutation compared to patients in cluster 1. To exclude the effect of BRAF mutation and RAS mutation on tumor aggressiveness, we compared clinical parameters between two clusters in patients without BRAF or RAS mutation. Cluster 2 showed significantly higher risk of lymph node metastasis compared to cluster 1.
Conclusion
Multifocal PTC has two distinct molecular subtypes with distinctive clinical behaviors. Our data suggested the clinical implications of the transcriptomic signature to predict clinical outcomes of multifocal PTC.

Keyword

Thyroid neoplasm; Gene expression profiling; Genomics

Figure

  • Fig. 1 Unsupervised clustering of multifocal papillary thyroid carcinomas (PTCs) revealing two distinct molecular subtypes. A hierarchical clustering of gene expression data from 226 multifocal PTC cases in The Cancer Genome Atlas (TCGA) data. Gene expression levels that were at least 2-fold different in at least 50 cases relative to the median value across cases were selected for hierarchical clustering analysis (3134 gene features). Data are given in matrix format, in which rows represent individual genes and columns represent each patient. Each cell in the matrix represents expression level of a gene feature in an individual pattern. Red and green colors in cell indicate relative high and low expression, respectively, as indicated in the scale bar.

  • Fig. 2 Copy number (CPN) alteration according to each cluster. The amount of CPN variation of PTC is small (−0.2 to +0.1) when compared to other cancer type. Multifocal PTCs in cluster 1 showed frequent CPN alteration when compared to cluster 2.

  • Fig. 3 Each cluster-specific gene expression patterns shown in heatmap. Data given in the matrix represent the expression level of a gene feature in an individual patient. We selected 100 group-specific genes to draw the heatmap. Red and green colors in cell indicate relative high and low expression, respectively.


Reference

1. Hundahl SA, Fleming ID, Fremgen AM, Menck HR. 1998; A National Cancer Data Base report on 53,856 cases of thyroid carcinoma treated in the U. S. 1985-1995 [see commetns]. Cancer. 83(12):2638–48. DOI: 10.1002/(SICI)1097-0142(19981215)83:12<2638::AID-CNCR31>3.0.CO;2-1. PMID: 9874472.
2. Joseph KR, Edirimanne S, Eslick GD. 2018; Multifocality as a prognostic factor in thyroid cancer: A meta-analysis. Int J Surg. 50:121–5. DOI: 10.1016/j.ijsu.2017.12.035. PMID: 29337178.
Article
3. Kim HJ, Sohn SY, Jang HW, Kim SW, Chung JH. 2013; Multifocality, but not bilaterality, is a predictor of disease recurrence/persistence of papillary thyroid carcinoma. World J Surg. 37(2):376–84. DOI: 10.1007/s00268-012-1835-2. PMID: 23135422.
Article
4. Park SY, Park YJ, Lee YJ, Lee HS, Choi SH, Choe G, et al. 2006; Analysis of differential BRAF(V600E) mutational status in multifocal papillary thyroid carcinoma: evidence of independent clonal origin in distinct tumor foci. Cancer. 107(8):1831–8. DOI: 10.1002/cncr.22218. PMID: 16983703.
5. Iacobone M, Jansson S, Barczynski M, Goretzki P. 2014; Multifocal papillary thyroid carcinoma--a consensus report of the European Society of Endocrine Surgeons (ESES). Langenbecks Arch Surg. 399(2):141–54. DOI: 10.1007/s00423-013-1145-7. PMID: 24263684.
Article
6. Wang W, Su X, He K, Wang Y, Wang H, Wang H, et al. 2016; Comparison of the clinicopathologic features and prognosis of bilateral versus unilateral multifocal papillary thyroid cancer: An updated study with more than 2000 consecutive patients. Cancer. 122(2):198–206. DOI: 10.1002/cncr.29689. PMID: 26506214.
Article
7. Amin A, Younis G, Sayed K, Saeed Z. 2015; Cervical lymph node metastasis in differentiated thyroid carcinoma: does it have an impact on disease-related morbid events? Nucl Med Commun. 36(2):120–4. DOI: 10.1097/MNM.0000000000000234. PMID: 25356622.
8. Blanchard C, Brient C, Volteau C, Sebag F, Roy M, Drui D, et al. 2013; Factors predictive of lymph node metastasis in the follicular variant of papillary thyroid carcinoma. Br J Surg. 100(10):1312–7. DOI: 10.1002/bjs.9210. PMID: 23939843.
Article
9. Pinyi Z, Bin Z, Jianlong B, Yao L, Weifeng Z. 2014; Risk factors and clinical indication of metastasis to lymph nodes posterior to right recurrent laryngeal nerve in papillary thyroid carcinoma: a single-center study in China. Head Neck. 36(9):1335–42. DOI: 10.1002/hed.23451. PMID: 23955992.
Article
10. Singhal S, Sippel RS, Chen H, Schneider DF. 2014; Distinguishing classical papillary thyroid microcancers from follicular-variant microcancers. J Surg Res. 190(1):151–6. DOI: 10.1016/j.jss.2014.03.032. PMID: 24735716. PMCID: PMC4053495.
Article
11. Konturek A, Barczynski M, Nowak W, Richter P. 2012; Prognostic factors in differentiated thyroid cancer--a 20-year surgical outcome study. Langenbecks Arch Surg. 397(5):809–15. DOI: 10.1007/s00423-011-0899-z. PMID: 22350610. PMCID: PMC3349847.
Article
12. Ahn D, Sohn JH, Kim JH, Shin CM, Jeon JH, Park JY. 2013; Preoperative subclinical hypothyroidism in patients with papillary thyroid carcinoma. Am J Otolaryngol. 34(4):312–9. DOI: 10.1016/j.amjoto.2012.12.013. PMID: 23357595.
Article
13. Cancer Genome Atlas Research Network. 2014; Integrated genomic characterization of papillary thyroid carcinoma. Cell. 159(3):676–90. DOI: 10.1016/j.cell.2014.09.050. PMID: 25417114. PMCID: PMC4243044.
14. Simon R, Lam A, Li MC, Ngan M, Menenzes S, Zhao Y. 2007; Analysis of gene expression data using BRB-ArrayTools. Cancer Inform. 3:11–7. DOI: 10.1177/117693510700300022. PMID: 19455231. PMCID: PMC2675854.
15. Eisen MB, Spellman PT, Brown PO, Botstein D. 1998; Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A. 95(25):14863–8. DOI: 10.1073/pnas.95.25.14863. PMID: 9843981. PMCID: PMC24541.
Article
16. Kim SJ, Myong JP, Jee HG, Chai YJ, Choi JY, Min HS, et al. 2016; Combined effect of Hashimoto's thyroiditis and BRAF(V600E) mutation status on aggressiveness in papillary thyroid cancer. Head Neck. 38(1):95–101. DOI: 10.1002/hed.23854. PMID: 25213729.
17. Bircan HY, Koc B, Akarsu C, Demiralay E, Demirag A, Adas M, et al. 2014; Is Hashimoto's thyroiditis a prognostic factor for thyroid papillary microcarcinoma? Eur Rev Med Pharmacol Sci. 18(13):1910–5. PMID: 25010622.
18. Lee YK, Park KH, Park SH, Kim KJ, Shin DY, Nam KH, et al. 2018; Association between diffuse lymphocytic infiltration and papillary thyroid cancer aggressiveness according to the presence of thyroid peroxidase antibody and BRAF(V600E) mutation. Head Neck. 40(10):2271–9. DOI: 10.1002/hed.25327. PMID: 29935011.
Article
19. Qu HJ, Qu XY, Hu Z, Lin Y, Wang JR, Zheng CF, et al. 2018; The synergic effect of BRAF(V600E) mutation and multifocality on central lymph node metastasis in unilateral papillary thyroid carcinoma. Endocr J. 65(1):113–20. DOI: 10.1507/endocrj.EJ17-0110. PMID: 29070763.
20. Kimbrell HZ, Sholl AB, Ratnayaka S, Japa S, Lacey M, Carpio G, et al. 2015; BRAF testing in multifocal papillary thyroid carcinoma. Biomed Res Int. 2015:486391. DOI: 10.1155/2015/486391. PMID: 26448939. PMCID: PMC4584030.
21. Giordano D, Gradoni P, Oretti G, Molina E, Ferri T. 2010; Treatment and prognostic factors of papillary thyroid microcarcinoma. Clin Otolaryngol. 35(2):118–24. DOI: 10.1111/j.1749-4486.2010.02085.x. PMID: 20500581.
Article
22. Hay ID, Hutchinson ME, Gonzalez-Losada T, McIver B, Reinalda ME, Grant CS, et al. 2008; Papillary thyroid microcarcinoma: a study of 900 cases observed in a 60-year period. Surgery. 144(6):980–7. discussion 7–8. DOI: 10.1016/j.surg.2008.08.035. PMID: 19041007.
Article
23. Lombardi CP, Bellantone R, De Crea C, Paladino NC, Fadda G, Salvatori M, et al. 2010; Papillary thyroid microcarcinoma: extrathyroidal extension, lymph node metastases, and risk factors for recurrence in a high prevalence of goiter area. World J Surg. 34(6):1214–21. DOI: 10.1007/s00268-009-0375-x. PMID: 20052467.
Article
24. Xing M, Alzahrani AS, Carson KA, Viola D, Elisei R, Bendlova B, et al. 2013; Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA. 309(14):1493–501. DOI: 10.1001/jama.2013.3190. PMID: 23571588. PMCID: PMC3791140.
Article
25. Henke LE, Pfeifer JD, Ma C, Perkins SM, DeWees T, El-Mofty S, et al. 2015; BRAF mutation is not predictive of long-term outcome in papillary thyroid carcinoma. Cancer Med. 4(6):791–9. DOI: 10.1002/cam4.417. PMID: 25712893. PMCID: PMC4472201.
26. Gouveia C, Can NT, Bostrom A, Grenert JP, van Zante A, Orloff LA. 2013; Lack of association of BRAF mutation with negative prognostic indicators in papillary thyroid carcinoma: the University of California, San Francisco, experience. JAMA Otolaryngol Head Neck Surg. 139(11):1164–70. DOI: 10.1001/jamaoto.2013.4501. PMID: 24030686.
27. Kim HK, Lee I, Lee J, Chang HS, Soh EY, Park IS, et al. 2018; BRAF(wild) papillary thyroid carcinoma has two distinct mRNA expression patterns with different clinical behaviors. Head Neck. 40(8):1707–18. DOI: 10.1002/hed.25151. PMID: 29573027.
28. Song YS, Lim JA, Park YJ. 2015; Mutation profile of well-differentiated thyroid cancer in Asians. Endocrinol Metab (Seoul). 30(3):252–62. DOI: 10.3803/EnM.2015.30.3.252. PMID: 26435130. PMCID: PMC4595348.
Article
29. An JH, Song KH, Kim SK, Park KS, Yoo YB, Yang JH, et al. 2015; RAS mutations in indeterminate thyroid nodules are predictive of the follicular variant of papillary thyroid carcinoma. Clin Endocrinol (Oxf). 82(5):760–6. DOI: 10.1111/cen.12579. PMID: 25109485.
Article
30. Oh KH, Jung KY, Baek SK, Woo JS, Cho JG, Kwon SY. 2017; Relation between RASSF1A methylation and BRAF mutation in thyroid tumor. Int J Thyroidol. 11(2):123–9. DOI: 10.11106/ijt.2018.11.2.123.
Article
31. Mauer J, Denson JL, Bruning JC. 2015; Versatile functions for IL-6 in metabolism and cancer. Trends Immunol. 36(2):92–101. DOI: 10.1016/j.it.2014.12.008. PMID: 25616716.
Article
32. Krawczyk CM, Holowka T, Sun J, Blagih J, Amiel E, DeBerardinis RJ, et al. 2010; Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood. 115(23):4742–9. DOI: 10.1182/blood-2009-10-249540. PMID: 20351312. PMCID: PMC2890190.
Article
33. Jovanovic L, Delahunt B, McIver B, Eberhardt NL, Grebe SK. 2008; Most multifocal papillary thyroid carcinomas acquire genetic and morphotype diversity through subclonal evolution following the intra-glandular spread of the initial neoplastic clone. J Pathol. 215(2):145–54. DOI: 10.1002/path.2342. PMID: 18393366.
Article
34. Lin X, Finkelstein SD, Zhu B, Silverman JF. 2008; Molecular analysis of multifocal papillary thyroid carcinoma. J Mol Endocrinol. 41(4):195–203. DOI: 10.1677/JME-08-0063. PMID: 18628356.
Article
35. McCarthy RP, Wang M, Jones TD, Strate RW, Cheng L. 2006; Molecular evidence for the same clonal origin of multifocal papillary thyroid carcinomas. Clin Cancer Res. 12(8):2414–8. DOI: 10.1158/1078-0432.CCR-05-2818. PMID: 16638846.
Article
36. Lu Z, Sheng J, Zhang Y, Deng J, Li Y, Lu A, et al. 2016; Clonality analysis of multifocal papillary thyroid carcinoma by using genetic profiles. J Pathol. 239(1):72–83. DOI: 10.1002/path.4696. PMID: 27071483. PMCID: PMC5706659.
Article
Full Text Links
  • IJT
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr