Int J Stem Cells.  2020 Mar;13(1):80-92. 10.15283/ijsc19097.

Robust and Reproducible Generation of Induced Neural Stem Cells from Human Somatic Cells by Defined Factors

Affiliations
  • 1Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
  • 2Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, Korea
  • 3School of Cell and Molecular Medicine, University of Bristol, Bristol, UK
  • 4Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul, Korea
  • 5Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
  • 6Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
  • 7School of Biotechnology and Healthcare, Wuyi University, Jiangmen, China

Abstract

Background and Objectives
Recent studies have described direct reprogramming of mouse and human somatic cells into induced neural stem cells (iNSCs) using various combinations of transcription factors. Although iNSC technology holds a great potential for clinical applications, the low conversion efficiency and limited reproducibility of iNSC generation hinder its further translation into the clinic, strongly suggesting the necessity of highly reproducible method for human iNSCs (hiNSCs). Thus, in orderto develop a highly efficient and reproducible protocol for hiNSC generation, we revisited the reprogramming potentials of previously reported hiNSC reprogramming cocktails by comparing the reprogramming efficiency of distinct factor combinations including ours.
Methods
We introduced distinct factor combinations, OSKM (OCT4+SOX2+KLF4+C-MYC), OCT4 alone, SOX2 alone, SOX2+HMGA2, BRN4+SKM+SV40LT (BSKMLT), SKLT, SMLT, and SKMLT and performed comparative analysis of reprogramming potentials of distinct factor combinations in hiNSC generation.
Results
Here we show that ectopic expression of five reprogramming factors, BSKMLT leads the robust hiNSC generation (>80 folds enhanced efficiency) from human somatic cells compared with previously described factor combinations. With our combination, we were able to observe hiNSC conversion within 7 days of transduction. Throughout further optimization steps, we found that both BRN4 and KLF4 are not essential for hiNSC conversion.
Conclusions
Our factor combination could robustly and reproducibly generate hiNSCs from human somatic cells with distinct origins. Therefore, our novel reprogramming strategy might serve as a useful tool for hiNSC-based clinical application.

Keyword

Direct conversion; Human induced neural stem cells; Robust and reproducible generation; Defined factors

Figure

  • Fig. 1 Generation of hiNSCs from hFFs using BSKM with SV40LT. (A) Schematic illustration of the reprogramming procedure for generating hiNSCs. Morphological changes during the reprogramming period are shown. Scale bars, 100 μm. (B) Morphology of hiNSCs after 2 weeks of transduction. Scale bars, 100 μm. (C) Morphology of the established hiNSCs at different passages. Scale bars, 100 μm. (D) Expression pattern of NSC- and fibroblast-specific markers were analyzed by RT-PCR in early and later passages of hiNSCs. GAPDH was used as a positive control.

  • Fig. 2 Comparative analysis of reprogramming potentials of distinct factor combinations. (A) The schematic illustration depicting the strategy for comparing the reprogramming efficiency of distinct factor combinations. (B) Time-course immunofluorescence analysis for comparing reprogramming potentials of distinct factor combinations. Scale bars, 100 μm. (C) Morphology of hiNSC clusters at 2 weeks after transduction. Scale bars, 100 μm. (D) The number of BLBP+/MSI1+ colonies were counted in a time-course manner. Data are presented as mean±SD from six independent experiments. *p<0.05, *p<0.01, ***p<0.001.

  • Fig. 3 Expression pattern of NSC-specific markers during hiNSC generation. Expression pattern of NSC markers in hFFs transduced with distinct factor combinations was analyzed by qPCR in a time-course manner. All the values were normalized to those of non-transduced hFFs. Data are presented as mean±SD of triplicate values. *p<0.05, **p<0.01, ***p<0.001.

  • Fig. 4 Characterization of SKMLT hiNSCs. (A) Immunofluorescence images of hESC-derived NSCs and SKMLT hiNSCs using antibodies against BRN2, BLBP, MSI1, and MSI2. Scale bars, 100 μm. (B) A heat map representing expression profile of genes with more than two-fold expression level difference between hFFs and hESC-derived NSCs. The color represents z-score for gene expression level in log2 scale. Clusters with red and blue bar on the left represent genes with lower and higher expression in hFFs compared to hESC-derived NSCs, respectively. (C, D) Differentiation potential of SKMLT hiNSCs into astrocytes (C) and neurons (D) as determined by immunocytochemistry with antibodies against GFAP and TUJ1, respectively, Scale bars, 100 μm. (E, F) The efficiency of differentiation into astrocytes (E) and neurons (F) from hESC-derived NSCs and SKMLT hiNSCs was quantified and compared via immunostaining with GFAP and TUJ1, respectively. Data are presented as mean±SD from eight independent experiments. N.S.: not significant.


Reference

References

1. Gage FH. 2000; Mammalian neural stem cells. Science. 287:1433–1438. DOI: 10.1126/science.287.5457.1433. PMID: 10688783.
Article
2. Blurton-Jones M, Kitazawa M, Martinez-Coria H, Castello NA, Müller FJ, Loring JF, Yamasaki TR, Poon WW, Green KN, LaFerla FM. 2009; Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci U S A. 106:13594–13599. DOI: 10.1073/pnas.0901402106. PMID: 19633196. PMCID: PMC2715325.
Article
3. Martino G, Pluchino S. 2006; The therapeutic potential of neural stem cells. Nat Rev Neurosci. 7:395–406. DOI: 10.1038/nrn1908. PMID: 16760919.
Article
4. Xuan AG, Luo M, Ji WD, Long DH. 2009; Effects of engrafted neural stem cells in Alzheimer's disease rats. Neurosci Lett. 450:167–171. DOI: 10.1016/j.neulet.2008.12.001. PMID: 19070649.
Article
5. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. 2007; Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131:861–872. DOI: 10.1016/j.cell.2007.11.019. PMID: 18035408.
Article
6. Lim KT, Kim J, Hwang SI, Zhang L, Han H, Bae D, Kim KP, Hu YP, Schöler HR, Lee I, Hui L, Han DW. 2018; Direct conversion of mouse fibroblasts into cholangiocyte progenitor cells. Stem Cell Reports. 10:1522–1536. DOI: 10.1016/j.stemcr.2018.03.002. PMID: 29606616. PMCID: PMC5995161.
Article
7. Kim JH, Kim KP, Lim KT, Lee SC, Yoon JY, Song GQ, Hwang SI, Schöler HR, Cantz T, Han DW. 2015; Generation of integration-free induced hepatocyte-like cells from mouse fibroblasts. Sci Rep. 5:15706. DOI: 10.1038/srep15706. PMID: 26503743. PMCID: PMC4621602.
Article
8. Kim JB, Lee H, Araúzo-Bravo MJ, Hwang K, Nam D, Park MR, Zaehres H, Park KI, Lee SJ. 2015; Oct4-induced oligodendrocyte progenitor cells enhance functional recovery in spinal cord injury model. EMBO J. 34:2971–2983. DOI: 10.15252/embj.201592652. PMID: 26497893. PMCID: PMC4687687.
Article
9. Han DW, Greber B, Wu G, Tapia N, Araúzo-Bravo MJ, Ko K, Bernemann C, Stehling M, Schöler HR. 2011; Direct reprogramming of fibroblasts into epiblast stem cells. Nat Cell Biol. 13:66–71. DOI: 10.1038/ncb2136. PMID: 21131959.
Article
10. Han DW, Tapia N, Hermann A, Hemmer K, Höing S, Araúzo-Bravo MJ, Zaehres H, Wu G, Frank S, Moritz S, Greber B, Yang JH, Lee HT, Schwamborn JC, Storch A, Schöler HR. 2012; Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell. 10:465–472. DOI: 10.1016/j.stem.2012.02.021. PMID: 22445517.
Article
11. Kim SM, Flaβkamp H, Hermann A, Araúzo-Bravo MJ, Lee SC, Lee SH, Seo EH, Lee SH, Storch A, Lee HT, Schöler HR, Tapia N, Han DW. 2014; Direct conversion of mouse fibroblasts into induced neural stem cells. Nat Protoc. 9:871–881. DOI: 10.1038/nprot.2014.056. PMID: 24651499.
Article
12. Lim KT, Lee SC, Gao Y, Kim KP, Song G, An SY, Adachi K, Jang YJ, Kim J, Oh KJ, Kwak TH, Hwang SI, You JS, Ko K, Koo SH, Sharma AD, Kim JH, Hui L, Cantz T, Schöler HR, Han DW. 2016; Small molecules facilitate single factor-mediated hepatic reprogramming. Cell Rep. 15:814–829. DOI: 10.1016/j.celrep.2016.03.071. PMID: 27149847.
Article
13. Hemmer K, Zhang M, van Wüllen T, Sakalem M, Tapia N, Baumuratov A, Kaltschmidt C, Kaltschmidt B, Schöler HR, Zhang W, Schwamborn JC. 2014; Induced neural stem cells achieve long-term survival and functional integration in the adult mouse brain. Stem Cell Reports. 3:423–431. DOI: 10.1016/j.stemcr.2014.06.017. PMID: 25241741. PMCID: PMC4265999.
Article
14. Hong JY, Lee SH, Lee SC, Kim JW, Kim KP, Kim SM, Tapia N, Lim KT, Kim J, Ahn HS, Ko K, Shin CY, Lee HT, Schöler HR, Hyun JK, Han DW. 2014; Therapeutic potential of induced neural stem cells for spinal cord injury. J Biol Chem. 289:32512–32525. DOI: 10.1074/jbc.M114.588871. PMID: 25294882. PMCID: PMC4239606.
Article
15. Lu J, Liu H, Huang CT, Chen H, Du Z, Liu Y, Sherafat MA, Zhang SC. 2013; Generation of integration-free and region-specific neural progenitors from primate fibroblasts. Cell Rep. 3:1580–1591. DOI: 10.1016/j.celrep.2013.04.004. PMID: 23643533. PMCID: PMC3786191.
Article
16. Maza I, Caspi I, Zviran A, Chomsky E, Rais Y, Viukov S, Geula S, Buenrostro JD, Weinberger L, Krupalnik V, Hanna S, Zerbib M, Dutton JR, Greenleaf WJ, Massarwa R, Novershtern N, Hanna JH. 2015; Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors. Nat Biotechnol. 33:769–774. DOI: 10.1038/nbt.3270. PMID: 26098448. PMCID: PMC4500825.
Article
17. Bar-Nur O, Verheul C, Sommer AG, Brumbaugh J, Schwarz BA, Lipchina I, Huebner AJ, Mostoslavsky G, Hochedlinger K. 2015; Lineage conversion induced by pluripotency factors involves transient passage through an iPSC stage. Nat Biotechnol. 33:761–768. DOI: 10.1038/nbt.3247. PMID: 26098450. PMCID: PMC4840929.
Article
18. Ring KL, Tong LM, Balestra ME, Javier R, Andrews-Zwilling Y, Li G, Walker D, Zhang WR, Kreitzer AC, Huang Y. 2012; Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell. 11:100–109. DOI: 10.1016/j.stem.2012.05.018. PMID: 22683203. PMCID: PMC3399516.
Article
19. Zhu S, Ambasudhan R, Sun W, Kim HJ, Talantova M, Wang X, Zhang M, Zhang Y, Laurent T, Parker J, Kim HS, Zaremba JD, Saleem S, Sanz-Blasco S, Masliah E, McKercher SR, Cho YS, Lipton SA, Kim J, Ding S. 2014; Small molecules enable OCT4-mediated direct reprogramming into expandable human neural stem cells. Cell Res. 24:126–129. DOI: 10.1038/cr.2013.156. PMID: 24296783. PMCID: PMC3879704.
Article
20. Corti S, Nizzardo M, Simone C, Falcone M, Donadoni C, Salani S, Rizzo F, Nardini M, Riboldi G, Magri F, Zanetta C, Faravelli I, Bresolin N, Comi GP. 2012; Direct reprogramming of human astrocytes into neural stem cells and neurons. Exp Cell Res. 318:1528–1541. DOI: 10.1016/j.yexcr.2012.02.040. PMID: 22426197. PMCID: PMC3405531.
Article
21. Yu KR, Shin JH, Kim JJ, Koog MG, Lee JY, Choi SW, Kim HS, Seo Y, Lee S, Shin TH, Jee MK, Kim DW, Jung SJ, Shin S, Han DW, Kang KS. 2015; Rapid and efficient direct conversion of human adult somatic cells into neural stem cells by HMGA2/let-7b. Cell Rep. 10:441–452. DOI: 10.1016/j.celrep.2014.12.038. PMID: 25600877.
Article
22. Wang L, Wang L, Huang W, Su H, Xue Y, Su Z, Liao B, Wang H, Bao X, Qin D, He J, Wu W, So KF, Pan G, Pei D. 2013; Generation of integration-free neural progenitor cells from cells in human urine. Nat Methods. 10:84–89. DOI: 10.1038/nmeth.2283. PMID: 23223155.
Article
23. Kim SM, Lim KT, Kwak TH, Lee SC, Im JH, Hali S, In Hwang S, Kim D, Hwang J, Kim KP, Chung HJ, Kim JB, Ko K, Chung HM, Lee HT, Schöler HR, Han DW. 2016; Induced neural stem cells from distinct genetic backgrounds exhibit different reprogramming status. Stem Cell Res. 16:460–468. DOI: 10.1016/j.scr.2016.02.025. PMID: 26930613.
Article
24. Yamashita T, Liu W, Matsumura Y, Miyagi R, Zhai Y, Kusaki M, Hishikawa N, Ohta Y, Kim SM, Kwak TH, Han DW, Abe K. 2017; Novel therapeutic transplantation of induced neural stem cells for stroke. Cell Transplant. 26:461–467. DOI: 10.3727/096368916X692988. PMID: 27653466. PMCID: PMC5657696.
Article
25. Velychko S, Kang K, Kim SM, Kwak TH, Kim KP, Park C, Hong K, Chung C, Hyun JK, MacCarthy CM, Wu G, Schöler HR, Han DW. 2019; Fusion of reprogramming factors alters the trajectory of somatic lineage conversion. Cell Rep. 27:30–39.e4. DOI: 10.1016/j.celrep.2019.03.023. PMID: 30943410.
Article
26. Petersen GF, Strappe PM. 2016; Generation of diverse neural cell types through direct conversion. World J Stem Cells. 8:32–46. DOI: 10.4252/wjsc.v8.i2.32. PMID: 26981169. PMCID: PMC4766249.
Article
27. Li W, Sun W, Zhang Y, Wei W, Ambasudhan R, Xia P, Talantova M, Lin T, Kim J, Wang X, Kim WR, Lipton SA, Zhang K, Ding S. 2011; Rapid induction and long-term self-renewal of primitive neural precursors from human embryonic stem cells by small molecule inhibitors. Proc Natl Acad Sci U S A. 108:8299–8304. DOI: 10.1073/pnas.1014041108. PMID: 21525408. PMCID: PMC3100988.
Article
28. Xu Y, Wei X, Wang M, Zhang R, Fu Y, Xing M, Hua Q, Xie X. 2013; Proliferation rate of somatic cells affects reprogramming efficiency. J Biol Chem. 288:9767–9778. DOI: 10.1074/jbc.M112.403881. PMID: 23439651. PMCID: PMC3617278.
Article
29. Ruiz S, Panopoulos AD, Herrerías A, Bissig KD, Lutz M, Berggren WT, Verma IM, Izpisua Belmonte JC. 2011; A high proliferation rate is required for cell reprogramming and maintenance of human embryonic stem cell identity. Curr Biol. 21:45–52. DOI: 10.1016/j.cub.2010.11.049. PMID: 21167714. PMCID: PMC3034649.
Article
30. Mirakhori F, Zeynali B, Rassouli H, Shahbazi E, Hashemizadeh S, Kiani S, Salekdeh GH, Baharvand H. 2015; Induction of neural progenitor-like cells from human fibroblasts via a genetic material-free approach. PLoS One. 10:e0135479. DOI: 10.1371/journal.pone.0135479. PMID: 26266943. PMCID: PMC4534403.
Article
31. Zheng J, Choi KA, Kang PJ, Hyeon S, Kwon S, Moon JH, Hwang I, Kim YI, Kim YS, Yoon BS, Park G, Lee J, Hong S, You S. 2017; Corrigendum to "A combination of small molecules directly reprograms mouse fibroblasts into neural stem cells" [Biochem. Biophys. Res. Commun. 476 (2016) 42-48]. Biochem Biophys Res Commun. 485:705. DOI: 10.1016/j.bbrc.2017.02.054. PMID: 28237361.
Article
32. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ. 2008; Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 451:141–146. DOI: 10.1038/nature06534. PMID: 18157115.
Article
33. Sgodda M, Mobus S, Hoepfner J, Sharma AD, Schambach A, Greber B, Ott M, Cantz T. 2013; Improved hepatic differentiation strategies for human induced pluripotent stem cells. Curr Mol Med. 13:842–855. DOI: 10.2174/1566524011313050015. PMID: 23642065.
Article
34. Hoch RV, Lindtner S, Price JD, Rubenstein JL. 2015; OTX2 transcription factor controls regional patterning within the medial ganglionic eminence and regional identity of the septum. Cell Rep. 12:482–494. DOI: 10.1016/j.celrep.2015.06.043. PMID: 26166575. PMCID: PMC4512845.
Article
35. Gaber ZB, Butler SJ, Novitch BG. 2013; PLZF regulates fibroblast growth factor responsiveness and maintenance of neural progenitors. PLoS Biol. 11:e1001676. DOI: 10.1371/journal.pbio.1001676. PMID: 24115909. PMCID: PMC3792860.
Article
36. Mitchell RR, Szabo E, Benoit YD, Case DT, Mechael R, Alamilla J, Lee JH, Fiebig-Comyn A, Gillespie DC, Bhatia M. 2014; Activation of neural cell fate programs toward direct conversion of adult human fibroblasts into tri-potent neural progenitors using OCT-4. Stem Cells Dev. 23:1937–1946. DOI: 10.1089/scd.2014.0023. PMID: 24694094. PMCID: PMC4120813.
Article
37. Shimazaki T, Arsenijevic Y, Ryan AK, Rosenfeld MG, Weiss S. 1999; A role for the POU-III transcription factor Brn-4 in the regulation of striatal neuron precursor differentiation. EMBO J. 18:444–456. DOI: 10.1093/emboj/18.2.444. PMID: 9889200. PMCID: PMC1171138.
Article
38. Francesconi M, Di Stefano B, Berenguer C, de Andrés-Aguayo L, Plana-Carmona M, Mendez-Lago M, Guillaumet-Adkins A, Rodriguez-Esteban G, Gut M, Gut IG, Heyn H, Lehner B, Graf T. 2019; Single cell RNA-seq identifies the origins of heterogeneity in efficient cell transdifferentiation and reprogramming. Elife. 8:e41627. DOI: 10.7554/eLife.41627. PMID: 30860479. PMCID: PMC6435319.
Article
39. Kang X, Yu Q, Huang Y, Song B, Chen Y, Gao X, He W, Sun X, Fan Y. 2015; Effects of integrating and non-integrating reprogramming methods on copy number variation and genomic stability of human induced pluripotent stem cells. PLoS One. 10:e0131128. DOI: 10.1371/journal.pone.0131128. PMID: 26131765. PMCID: PMC4488894.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr