2. Shamsaldeen YA, Mackenzie LS, Lione LA, Benham CD. 2016; Methylglyoxal, a metabolite increased in diabetes is associated with insulin resistance, vascular dysfunction and neuropathies. Curr Drug Metab. 17:359–367. DOI:
10.2174/1389200217666151222155216. PMID:
26965039.
Article
3. Matafome P, Rodrigues T, Sena C, Seiça R. 2017; Methylglyoxal in metabolic disorders: facts, myths, and promises. Med Res Rev. 37:368–403. DOI:
10.1002/med.21410. PMID:
27636890.
Article
4. Nigro C, Raciti GA, Leone A, Fleming TH, Longo M, Prevenzano I, Fiory F, Mirra P, D'Esposito V, Ulianich L, Nawroth PP, Formisano P, Beguinot F, Miele C. 2014; Methylglyoxal impairs endothelial insulin sensitivity both in vitro and in vivo. Diabetologia. 57:1485–1494. DOI:
10.1007/s00125-014-3243-7. PMID:
24759959.
Article
5. Hanssen NMJ, Scheijen JLJM, Jorsal A, Parving HH, Tarnow L, Rossing P, Stehouwer CDA, Schalkwijk CG. 2017; Higher plasma methylglyoxal levels are associated with incident cardiovascular disease in individuals with type 1 diabetes: a 12-year follow-up study. Diabetes. 66:2278–2283. DOI:
10.2337/db16-1578. PMID:
28588100.
Article
6. Nigro C, Leone A, Raciti GA, Longo M, Mirra P, Formisano P, Beguinot F, Miele C. 2017; Methylglyoxal-Glyoxalase 1 balance: the root of vascular damage. Int J Mol Sci. 18:E188. DOI:
10.3390/ijms18010188. PMID:
28106778. PMCID:
PMC5297820.
Article
7. Wang XJ, Ma SB, Liu ZF, Li H, Gao WY. 2019; Elevated levels of
α-dicarbonyl compounds in the plasma of type II diabetics and their relevance with diabetic nephropathy. J Chromatogr B Analyt Technol Biomed Life Sci. 1106(1107):19–25. DOI:
10.1016/j.jchromb.2018.12.027. PMID:
30639946.
8. Kim J, Lee YM, Kim CS, Sohn E, Jo K, Shin SD, Kim JS. 2013; Ethyl pyruvate prevents methyglyoxal-induced retinal vascular injury in rats. J Diabetes Res. 2013:460820. DOI:
10.1155/2013/460820. PMID:
23671872. PMCID:
PMC3647584.
Article
9. Maessen DE, Stehouwer CD, Schalkwijk CG. 2015; The role of methylglyoxal and the glyoxalase system in diabetes and other age-related diseases. Clin Sci (Lond). 128:839–861. DOI:
10.1042/CS20140683. PMID:
25818485.
Article
10. Zendjabil M, Favard S, Tse C, Abbou O, Hainque B. 2017; [The microRNAs as biomarkers: what prospects?]. C R Biol. 340:114–131. French. DOI:
10.1016/j.crvi.2016.12.001. PMID:
28081967.
11. Tiwari J, Gupta G, de Jesus Andreoli Pinto T, Sharma R, Pabreja K, Matta Y, Arora N, Mishra A, Sharma R, Dua K. 2018; Role of microRNAs (miRNAs) in the pathophysiology of diabetes mellitus. Panminerva Med. 60:25–28.
Article
13. Zhang Y, Yu M, Dai M, Chen C, Tang Q, Jing W, Wang H, Tian W. 2017; miR-450a-5p within rat adipose tissue exosome-like vesicles promotes adipogenic differentiation by targeting WISP2. J Cell Sci. 130:1158–1168. DOI:
10.1242/jcs.197764. PMID:
28167681.
Article
14. Mirhashemi F, Scherneck S, Kluth O, Kaiser D, Vogel H, Kluge R, Schürmann A, Neschen S, Joost HG. 2011; Diet dependence of diabetes in the New Zealand Obese (NZO) mouse: total fat, but not fat quality or sucrose accelerates and aggravates diabetes. Exp Clin Endocrinol Diabetes. 119:167–171. DOI:
10.1055/s-0030-1263127. PMID:
20827663.
Article
15. Rao X, Huang X, Zhou Z, Lin X. 2013; An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath. 3:71–85. PMID:
25558171. PMCID:
PMC4280562.
16. Voziyan P, Brown KL, Chetyrkin S, Hudson B. 2014; Site-specific AGE modifications in the extracellular matrix: a role for glyoxal in protein damage in diabetes. Clin Chem Lab Med. 52:39–45. DOI:
10.1515/cclm-2012-0818. PMID:
23492568. PMCID:
PMC4104777.
Article
18. Liu H, Zhang N, Tian D. 2014; MiR-30b is involved in methylglyoxal-induced epithelial-mesenchymal transition of peritoneal mesothelial cells in rats. Cell Mol Biol Lett. 19:315–329. DOI:
10.2478/s11658-014-0199-z. PMID:
24898602. PMCID:
PMC6276001.
Article
19. Nigro C, Mirra P, Prevenzano I, Leone A, Fiory F, Longo M, Cabaro S, Oriente F, Beguinot F, Miele C. 2018; miR-214-Dependent increase of PHLPP2 levels mediates the impairment of insulin-stimulated akt activation in mouse aortic endothelial cells exposed to methylglyoxal. Int J Mol Sci. 19:E522. DOI:
10.3390/ijms19020522. PMID:
29425121. PMCID:
PMC5855744.
Article
20. Li SS, Wu Y, Jin X, Jiang C. 2015; The SUR2B subunit of rat vascular KATP channel is targeted by miR-9a-3p induced by prolonged exposure to methylglyoxal. Am J Physiol Cell Physiol. 308:C139–C145. DOI:
10.1152/ajpcell.00311.2014. PMID:
25354529. PMCID:
PMC4297771.
Article
21. Ying C, Sui-Xin L, Kang-Ling X, Wen-Liang Z, Lei D, Yuan L, Fan Z, Chen Z. 2014; MicroRNA-492 reverses high glucose-induced insulin resistance in HUVEC cells through targeting resistin. Mol Cell Biochem. 391:117–125. DOI:
10.1007/s11010-014-1993-7. PMID:
24526524. PMCID:
PMC4006129.
Article
22. Wang X, Peng B, Xu C, Gao Z, Cao Y, Liu Z, Liu T. 2016; BDNF-ERK1/2 signaling pathway in ketamine-associated lower urinary tract symptoms. Int Urol Nephrol. 48:1387–1393. DOI:
10.1007/s11255-016-1315-y. PMID:
27165402.
Article
23. Jia H, Xiaojuan L, Li Y, Jiarui Z, Qiao Z, Xinyi L, Miao L, Yanhong L. 2015; The effect of miR-450a-5p on the biological behavior of serous ovarian cancer SKOV3 cells. Modern Oncol. 7:829–896.
24. Memon MA, Khan RN, Riaz S, Ain QU, Ahmed M, Kumar N. 2018; Methylglyoxal and insulin resistance in berberine-treated type 2 diabetic patients. J Res Med Sci. 23:110.
25. De Nigris V, Pujadas G, La Sala L, Testa R, Genovese S, Ceriello A. 2015; Short-term high glucose exposure impairs insulin signaling in endothelial cells. Cardiovasc Diabetol. 14:114. DOI:
10.1186/s12933-015-0278-0. PMID:
26297582. PMCID:
PMC4546318.
Article
26. Farah C, Kleindienst A, Bolea G, Meyer G, Gayrard S, Geny B, Obert P, Cazorla O, Tanguy S, Reboul C. 2013; Exercise-induced cardioprotection: a role for eNOS uncoupling and NO metabolites. Basic Res Cardiol. 108:389. DOI:
10.1007/s00395-013-0389-2. PMID:
24105420.
Article
27. Li JB, Wang HY, Yao Y, Sun QF, Liu ZH, Liu SQ, Zhuang JL, Wang YP, Liu HY. 2017; Overexpression of microRNA-138 alleviates human coronary artery endothelial cell injury and inflammatory response by inhibiting the PI3K/Akt/eNOS pathway. J Cell Mol Med. 21:1482–1491. DOI:
10.1111/jcmm.13074. PMID:
28371277. PMCID:
PMC5542903.
Article
28. Wang L, Hu XH, Huang ZX, Nie Q, Chen ZG, Xiang JW, Qi RL, Yang TH, Xiao Y, Qing WJ, Gigantelli G, Nguyen QD, Li DW. 2017; Regulation of CREB functions by phosphorylation and sumoylation in nervous and visual systems. Curr Mol Med. 16:885–892. DOI:
10.2174/1566524016666161223110106. PMID:
28017136.
Article
29. de Jesus DS, DeVallance E, Li Y, Falabella M, Guimaraes D, Shiva S, Kaufman BA, Gladwin MT, Pagano PJ. 2019; Nox1/Ref-1-mediated activation of CREB promotes Gremlin1-driven endothelial cell proliferation and migration. Redox Biol. 22:101138. DOI:
10.1016/j.redox.2019.101138. PMID:
30802716. PMCID:
PMC6395885.
Article
30. Hogan MF, Ravnskjaer K, Matsumura S, Huising MO, Hull RL, Kahn SE, Montminy M. 2015; Hepatic insulin resistance following chronic activation of the CREB coactivator CRTC2. J Biol Chem. 290:25997–26006. DOI:
10.1074/jbc.M115.679266. PMID:
26342077. PMCID:
PMC4646253.
Article
31. Niwano K, Arai M, Koitabashi N, Hara S, Watanabe A, Sekiguchi K, Tanaka T, Iso T, Kurabayashi M. 2006; Competitive binding of CREB and ATF2 to cAMP/ATF responsive element regulates eNOS gene expression in endothelial cells. Arterioscler Thromb Vasc Biol. 26:1036–1042. DOI:
10.1161/01.ATV.0000215179.76144.39. PMID:
16497991.
Article