J Korean Med Sci.  2020 Mar;35(12):e78. 10.3346/jkms.2020.35.e78.

Extracting Structured Genotype Information from Free-Text HLA Reports Using a Rule-Based Approach

Affiliations
  • 1Center for Precision Medicine, Seoul National University Hospital, Seoul, Korea. geffa@snu.as.kr
  • 2Division of Biomedical Informatics, Seoul National University Biomedical Informatics and Systems Biomedical Informatics Research Center, Seoul National University College of Medicine, Seoul, Korea.
  • 3Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea. eysong1@snu.ac.kr

Abstract

BACKGROUND
Human leukocyte antigen (HLA) typing is important for transplant patients to prevent a severe mismatch reaction, and the result can also support the diagnosis of various disease or prediction of drug side effects. However, such secondary applications of HLA typing results are limited because they are typically provided in free-text format or PDFs on electronic medical records. We here propose a method to convert HLA genotype information stored in an unstructured format into a reusable structured format by extracting serotype/allele information.
METHODS
We queried HLA typing reports from the clinical data warehouse of Seoul National University Hospital (SUPPREME) from 2000 to 2018 as a rule-development data set (64,024 reports) and from the most recent year (6,181 reports) as a test set. We used a rule-based natural language approach using a Python regex function to extract the 1) number of patients in the report, 2) clinical characteristics such as indication of the HLA testing, and 3) precise HLA genotypes. The performance of the rules and codes was evaluated by comparison between the extracted results from the test set and a validation set generated by manual curation.
RESULTS
Among 11,287 reports for development set and 1,107 for the test set describing HLA typing for a single patient, iterative rule generation developed 124 extracting rules and 8 cleaning rules for HLA genotypes. Application of these rules extracted HLA genotypes with 0.892-0.999 precision and 0.795-0.998 recall for the five HLA genes. The precision and recall of the extracting rules for the number of patients in a report were 0.997 and 0.994 and those for the clinical variable extraction were 0.997 and 0.992, respectively. All extracted HLA alleles and serotypes were transformed according to formal HLA nomenclature by the cleaning rules.
CONCLUSION
The rule-based HLA genotype extraction method shows reliable accuracy. We believe that there are significant number of patients who takes profit when this under-used genetic information will be return to them.

Keyword

Data Sets as Topic; Electronic Medical Record; Genetic Testing; HLA Test; Major Histocompatibility Complex

MeSH Terms

Alleles
Boidae
Dataset
Datasets as Topic
Diagnosis
Drug-Related Side Effects and Adverse Reactions
Electronic Health Records
Genetic Testing
Genotype*
Histocompatibility Testing
Humans
Leukocytes
Major Histocompatibility Complex
Methods
Seoul
Serogroup
Full Text Links
  • JKMS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr