Nat Prod Sci.  2019 Dec;25(4):348-353. 10.20307/nps.2019.25.4.348.

Identification of Soluble Epoxide Hydrolase Inhibitors from the Seeds of Passiflora edulis Cultivated in Vietnam

Affiliations
  • 1Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam. cuong.todao@phenikaa-uni.edu.vn, nmcuong_inpc@yahoo.com.vn
  • 2Faculty of Pharmacy, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam.
  • 3Phenikaa Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, No.167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi 11313, Vietnam.
  • 4Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100803, Vietnam.
  • 5Department of Biomedical Sciences, Institute for Research and Executive Education (VNUK), The University of Danang, 158A Le Loi Street, Hai Chau district, Da Nang 551000, Vietnam.
  • 6College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea.

Abstract

Soluble epoxide hydrolases (sEH) are enzymes present in all living organisms, metabolize epoxy fatty acids to 1,2-diols. sEH in the metabolism of polyunsaturated fatty acids plays a key role in inflammation. In addition, the endogenous lipid mediators in cardiovascular disease are also broken down to diols by the action of sEH that enhanced cardiovascular protection. In this study, sEH inhibitory guided fractionation led to the isolation of five phenolic compounds trans-resveratrol (1), trans-piceatannol (2), sulfuretin (3), (+)-balanophonin (4), and cassigarol E (5) from the ethanol extract of the seeds of Passiflora edulis Sims cultivated in Vietnam. The chemical structures of isolated compounds were determined by the interpretation of NMR spectral data, mass spectra, and comparison with data from the literature. The soluble epoxide hydrolase (sEH) inhibitory activity of isolated compounds was evaluated. Among them, trans-piceatannol (2) showed the most potent inhibitory activity on sEH with an ICâ‚…â‚€ value of 3.4 µM. This study marks the first time that sulfuretin (3) was isolated from Passiflora edulis as well as (+)-balanophonin (4), and cassigarol E (5) were isolated from Passiflora genus.

Keyword

Passiflora edulis; Passifloraceae; Phenolic; Stilbene; sEH

MeSH Terms

Cardiovascular Diseases
Epoxide Hydrolases
Ethanol
Fatty Acids
Fatty Acids, Unsaturated
Inflammation
Metabolism
Passiflora*
Passifloraceae
Phenol
Vietnam*
Epoxide Hydrolases
Ethanol
Fatty Acids
Fatty Acids, Unsaturated
Phenol

Figure

  • Fig. 1 The structures of isolated compounds (1 – 5) from the seeds of P. edulis.


Reference

1. Morisseau C, Hammock BD. Annu Rev Pharmacol Toxicol. 2013; 53:37–58.
2. Morisseau C, Inceoglu B, Schmelzer K, Tsai HJ, Jinks SL, Hegedus CM, Hammock BD. J Lipid Res. 2010; 51:3481–3490.
3. Lin WK, Falck JR, Wong PY. Biochem Biophys Res Commun. 1990; 167:977–981.
4. Inceoglu B, Jinks SL, Schmelzer KR, Waite T, Kim IH, Hammock BD. Life Sci. 2006; 79:2311–2319.
5. Yu Z, Xu F, Huse LM, Morisseau C, Draper AJ, Newman JW, Parker C, Graham L, Engler MM, Hammock BD, Zeldin DC, Kroetz DL. Circ Res. 2000; 87:992–998.
6. Kim JH, Tai BH, Yang SY, Kim JE, Kim SK, Kim YH. Bull Korean Chem Soc. 2015; 36:300–304.
7. Kim JH, Cho CW, Tai BH, Yang SY, Choi GS, Kang JS, Kim YH. Molecules. 2015; 20:21405–21414.
8. Jo AR, Kim JH, Yan XT, Yang SY, Kim YH. J Enzyme Inhib Med Chem. 2016; 31:70–78.
9. Lee GY, Kim JH, Choi SK, Kim YH. Bioorg Med Chem Lett. 2015; 25:5097–5101.
10. Kim JH, Morgan AMA, Tai BH, Van DT, Cuong NM, Kim YH. J Enzyme Inhib Med Chem. 2016; 31:640–644.
11. Khanh PN, Duc HV, Huong TT, Son NT, Ha VT, Van DT, Tai BH, Kim JE, Jo AR, Kim YH, Cuong NM. Fitoterapia. 2016; 109:39–44.
12. Thokchom R, Mandal GJ. Agric Eng Food Technol. 2017; 4:27–30.
Article
13. Beninca JP, Montanher AB, Zucolotto SM, Schenkel EP, Frode TS. Food Chem. 2007; 104:1097–1105.
14. Ichimura T, Yamanaka A, Ichiba T, Toyokawa T, Kamada Y, Tamamura T, Maruyama S. Biosci Biotechnol Biochem. 2006; 70:718–721.
15. Lourith N, Kanlayavattanakul M. J Oleo Sci. 2013; 64:235–240.
16. Puricelli L, Dell'Aica I, Sartorb L, Garbisa S, Caniato R. Fitoterapia. 2003; 74:302–304.
17. Coleta M, Campos MG, Cotrim MD, Proenca da. Pharmacopsychiatry. 2001; 34:S20–S21.
18. Pelegrini PB, Noronha EF, Muniz MA, Vasconcelos IM, Chiarello MD, Oliveira JT, Franco OL. Biochim Biophys Acta. 2006; 1764:1141–1146.
19. Matsui Y, Sugiyama K, Kamei M, Takahashi T, Suzuki T, Katagata Y, Ito T. J Agric Food Chem. 2010; 58:11112–11118.
20. Bombardelli E, Bonati A, Gabetta B, Martinelli EM, Mustich G, Danieli G. Phytochemisty. 1975; 14:2661–2665.
21. Mareck U, Herrmann K, Galensa R, Wray V. Phytochemistry. 1991; 30:3486–3487.
22. Seigler DS, Pauli GF, Nahrstedt A, Leen R. Phytochemistry. 2002; 60:873–882.
23. Pereira CA, Yariwake JH, Lancas FM, Wauters JN, Tits M, Angenot L. Phytochem Anal. 2004; 15:241–248.
24. Sano S, Sugiyama K, Ito T, Katano Y, Ishihata A. J Agric Food Chem. 2011; 59:6209–6213.
25. Piombo G, Barouh N, Barea B, Boulanger R, Brat P, Pina M, Villeneuve P. OCL. 2006; 13:195–199.
26. Mattivi F, Reniero F, Korhammer S. J Agric Food Chem. 1995; 43:1820–1823.
27. Mathi P, Das S, Nikhil K, Roy P, Yerra S, Ravada SR, Bokka VR, Botlagunta M. Int J Prev Med. 2015; 6:101.
28. Kukreja A, Wadhwa N, Tiwari A. J Blood Disord Transfus. 2014; 5:240.
29. Gaur R, Kumar S, Trivedi P, Bhakuni RS, Bawankule DU, Pal A, Shanker K. Nat Prod Commun. 2010; 5:1243–1246.
30. Júnior GMV, Sousa CMM, Cavalheiro AJ, Lago JHG, Chaves MH. Helv Chim Acta. 2008; 91:2159–2167.
31. Lee DS, Jeong GS, Li B, Park H, Kim YC. Int Immunopharmacol. 2010; 10:850–858.
32. Lee KW, Chung KS, Seo JH, Yim SV, Park HJ, Choi JH, Lee KT. J Cell Biochem. 2012; 113:2835–2844.
33. Pariyar R, Lamichhane R, Jung HJ, Kim SY, Seo J. Int J Mol Sci. 2017; 18:E2753.
34. Li JL, Li N, Xing SS, Zhang N, Li BB, Chen JG, Ahn JS, Cui L. Arch Pharm Res. 2017; 40:1265–1270.
35. Esposito T, Sansone F, Franceschelli S, Del Gaudio P, Picerno P, Aquino RP, Mencherini T. Int J Mol Sci. 2017; 18:E392.
36. Boğa M, Yilmaz PK, Cebe DB, Fatima M, Siddiqui BS, Kolak U. Z Naturforsch C J Biosci. 2014; 69:381–390.
37. Lim SY, Subedi L, Shin D, Kim CS, Lee KR, Kim SY. Biomol Ther. 2017; 25:519–527.
38. Baba K, Kido T, Taniguchi M, Kozawaqa M. Phytochemistry. 1994; 36:1509–1513.
39. Bunluepuech K, Wattanapiromsakul C, Tewtrakul S. Songklanakarin J Sci Technol. 2013; 35:665–669.
40. Tran HHT, Nguyen MC, Le HT, Nguyen TL, Pham TB, Chau VM, Nguyen HN, Nguyen TD. Pharm Biol. 2014; 52:74–77.
41. Yuenyongsawad S, Bunluepuech K, Wattanapiromsakul C, Tewtrakul S. Songklanakarin J Sci Technol. 2014; 36:189–194.
42. Buscató E, Büttner D, Brüggerhoff A, Klingler FM, Weber J, Scholz B, Zivković A, Marschalek R, Stark H, Steinhilber D, Bode HB, Proschak E. ChemMedChem. 2013; 8:919–923.
43. Sun YN, Li W, Kim JH, Yan XT, Kim JE, Yang SY, Kim YH. Arch Pharm Res. 2015; 38:998–1004.
44. Broadwell RD, Sofroniew MV. Exp Neurol. 1993; 120:245–263.
Full Text Links
  • NPS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr