1. Giebisch G. Renal potassium transport: mechanisms and regulation. Am J Physiol. 1998; 274:F817–F833.
Article
2. Bae CS, Cho HJ, Ahn KY. Alteration of Akt, p-AKT, ERK, and p-ERK proteins expression in the kidney of hypokalemic rat. Korean J Phys Anthropol. 2017; 30:87–98. Korean.
Article
3. Ahn KY, Turner PB, Madsen KM, Kone BC. Effect of chronic hypokalemia on renal expression of the gene encoding the “gastric” H(+)-K(+)-ATPase alpha-subunit. Am J Physiol. 1996; 270:F557–F566.
4. Ahn KY, Park KW, Kim KK, Kone BC. Chronic hypokalemia enhances expression of the H(+)-K(+)-ATPase α2 alpha 2-subunit gene in renal medulla. Am J Physiol. 1996; 271:F314–F321.
5. Ahn KY, Kim SC, Moon B, Kim KK, Kim BY. Renal adaptive responses of Na+-K+-ATPase subunit isoforms to chronic hypokalemia. Korean J Anat. 1998; 31:405–418. Korean.
6. Kim JH, Cho HJ, Bae MO, Park JJ, Ahn KY. Regulation of biocarbonate ions hypokalemic rat kidney. Korean J Anat. 2004; 37:337–345. Korean.
7. Lim JS, Ahn KY. Expression of Nrf2 transcription factor in rat kidney. Korean J Nephrol. 2011; 30:239–245. Korean.
8. Lee CB, Lee YS, Lee JY, Lee SE, Ahn KY. Nrf2 and Sp synergistically enhance the expression of ion transporters in potassium-depleted conditions. J Nephrol. 2012; 25:225–232.
Article
9. Moi P, Chan K, Asunis I, Cao A, Kan YW. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci U S A. 1994; 91:9926–9930.
Article
10. Itoh K, Igarashi K, Hayashi N, Nishizawa M, Yamamoto M. Cloning and characterization of a novel erythroid cell-derived CNC family transcription factor heterodimerizing with the small Maf family proteins. Mol Cell Biol. 1995; 15:4184–4193.
Article
11. Liu M, Grigoryev DN, Crow MT, Haas M, Yamamoto M, Reddy SP, et al. Transcription factor Nrf2 is protective during ischemic and nephrotoxic acute kidney injury in mice. Kidney Int. 2009; 76:277–285.
Article
12. Yu R, Chen C, Mo YY, Hebbar V, Owuor ED, Tan TH, et al. Activation of mitogen-activated protein kinase pathways induces antioxidant response element-mediated gene expression via a Nrf2-dependent mechanism. J Biol Chem. 2000; 275:39907–39913.
Article
13. Motohashi H, Yamamoto M. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med. 2004; 10:549–557.
Article
14. Shen G, Jeong WS, Hu R, Kong AN. Regulation of Nrf2, NF-kappaB, and AP-1 signaling pathways by chemopreventive agents. Antioxid Redox Signal. 2005; 7:1648–1663.
Article
15. Cho HJ, Ahn KY. Alteration of Nrf2 and p-Nrf2 proteins expression in hypokalemic rat kidney. Korean J Phys Anthropol. 2015; 28:55–62. Korean.
Article
16. Zhou X, Yin W, Doi SQ, Robinson SW, Takeyasu K, Fan X. Stimulation of Na, K-ATPase by low potassium requires reactive oxygen species. Am J Physiol Cell Physiol. 2003; 285:C319–C326.
17. Babilonia E, Wei Y, Sterling H, Kaminski P, Wolin M, Wang WH. Superoxide anions are involved in mediating the effect of low K intake on c-Src expression and renal K secretion in the cortical collecting duct. J Biol Chem. 2005; 280:10790–10796.
Article
18. Deplancke B, Gaskins HR. Redox control of the transsulfuration and glutathione biosynthesis pathways. Curr Opin Clin Nutr Metab Care. 2002; 5:85–92.
Article
19. Kwon T, Kwon DY, Chun J, Kim JH, Kang SS. Akt protein kinase inhibits Rac1-GTP binding through phosphorylation at serine 71 of Rac1. J Biol Chem. 2000; 275:423–428.
Article
20. Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer. 2002; 2:489–501.
Article
21. Osaki M, Oshimura M, Ito H. PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis. 2004; 9:667–676.
Article
22. Jaiswal AK. Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med. 2004; 36:1199–1207.
Article