Ann Dermatol.  2020 Feb;32(1):21-30. 10.5021/ad.2020.32.1.21.

Minocycline and Its Impact on Microbial Dysbiosis in the Skin and Gastrointestinal Tract of Acne Patients

Affiliations
  • 1Department of Dermatology, Johns Hopkins University, Baltimore, MD, USA. achien3@jhmi.edu
  • 2Department of Dermatology, Medical University of Graz, Graz, Austria.
  • 3Institute of Genetic Medicine, Johns Hopkins University, MD, USA.
  • 4Institute for Genome Sciences, University of Maryland, Baltimore, MD, USA.

Abstract

BACKGROUND
Associations between acne and gastrointestinal comorbidities suggest that microbial dysbiosis and intestinal permeability may promote inflammatory acne, a condition often managed with oral antibiotics.
OBJECTIVE
We performed a case-control study to investigate the skin and gut microbiota in 8 acne patients before and after receiving oral minocycline compared to controls matched by age ±5 years, sex, and race.
METHODS
DNA was extracted from stool samples and facial skin swabs. Sequencing of the V3V4 region of the bacterial 16S rRNA gene was performed using Illumina MiSeq and analyzed using QIIME/MetaStats 2.0 software.
RESULTS
Acne patients included 7 female and 1 male, ages 20~32. Shannon diversity was not significantly different between the skin (p=0.153) or gut (p < 0.999) microbiota of acne patients before and after antibiotics. The gut microbiota in pre-antibiotic acne patients compared to acne-free controls was depleted in probiotics Lactobacillus iners (p=0.001), Lactobacillus zeae (p=0.001), and Bifidobacterium animalis (p=0.026). After antibiotics, the gut microbiota of acne patients was depleted in Lactobacillus salivarius (p=0.001), Bifidobacterium adolescentis (p=0.002), Bifidobacterium pseudolongum (p=0.010), and Bifidobacterium breve (p=0.042), while the skin microbiota was enriched in probiotics Bifidobacterium longum (p=0.028) and Leuconostoc mesenteroides (p=0.029) and depleted in Staphylococcus epidermidis (p=0.009) and Prevotella nigrescens (p=0.028). At the phylum level, significant enrichment of Bacteroidetes in stool of acne patients following antibiotic treatment (p=0.033) led to a decreased Firmicutes to Bacteroidetes ratio.
CONCLUSION
Minocycline produces significant derangements in the microbiota of the skin and gut, including many probiotic species, highlighting the potential for more targeted antimicrobial treatments for acne.

Keyword

Acne vulgaris; Bacteroidetes; Firmicutes; Microbiome; Minocycline; Propionibacterium

MeSH Terms

Acne Vulgaris*
Anti-Bacterial Agents
Bacteroidetes
Bifidobacterium
Case-Control Studies
Comorbidity
Continental Population Groups
DNA
Dysbiosis*
Female
Firmicutes
Gastrointestinal Microbiome
Gastrointestinal Tract*
Genes, rRNA
Humans
Lactobacillus
Leuconostoc
Male
Microbiota
Minocycline*
Permeability
Prevotella nigrescens
Probiotics
Propionibacterium
Skin*
Staphylococcus epidermidis
Sulfalene
Anti-Bacterial Agents
DNA
Minocycline
Sulfalene

Figure

  • Fig. 1 Rarefaction plots of mean alpha diversity were created with the Shannon diversity index metric to compare microbiota of the skin (all sites) and gut in controls, acne patients at baseline, and acne patients after 4 weeks of minocycline.

  • Fig. 2 Principal coordinates analysis (PCoA) plots of weighted UniFrac distances demonstrating beta diversity of the microbiota of the skin (all sites) and gut in controls, acne patients at baseline, and acne patients after 4 weeks of minocycline. PC: principal coordinates.

  • Fig. 3 Phylum level relative abundance distribution of gut microbiota in controls, acne cases at baseline, and acne cases after 4 weeks of minocycline.


Reference

1. Hicks LA, Bartoces MG, Roberts RM, Suda KJ, Hunkler RJ, Taylor TH Jr, et al. US outpatient antibiotic prescribing variation according to geography, patient population, and provider specialty in 2011. Clin Infect Dis. 2015; 60:1308–1316.
Article
2. Del Rosso JQ, Webster GF, Rosen T, Thiboutot D, Leyden JJ, Gallo R, et al. Status report from the scientific panel on antibiotic use in dermatology of the American Acne and Rosacea Society: part 1: antibiotic prescribing patterns, sources of antibiotic exposure, antibiotic consumption and emergence of antibiotic resistance, impact of alterations in antibiotic prescribing, and clinical sequelae of antibiotic use. J Clin Aesthet Dermatol. 2016; 9:18–24.
3. Coates P, Vyakrnam S, Eady EA, Jones CE, Cove JH, Cunliffe WJ. Prevalence of antibiotic-resistant propionibacteria on the skin of acne patients: 10-year surveillance data and snapshot distribution study. Br J Dermatol. 2002; 146:840–848.
Article
4. Ross JI, Snelling AM, Carnegie E, Coates P, Cunliffe WJ, Bettoli V, et al. Antibiotic-resistant acne: lessons from Europe. Br J Dermatol. 2003; 148:467–478.
Article
5. Simonart T, Dramaix M. Treatment of acne with topical antibiotics: lessons from clinical studies. Br J Dermatol. 2005; 153:395–403.
Article
6. Levy RM, Huang EY, Roling D, Leyden JJ, Margolis DJ. Effect of antibiotics on the oropharyngeal flora in patients with acne. Arch Dermatol. 2003; 139:467–471.
Article
7. Mills O Jr, Thornsberry C, Cardin CW, Smiles KA, Leyden JJ. Bacterial resistance and therapeutic outcome following three months of topical acne therapy with 2% erythromycin gel versus its vehicle. Acta Derm Venereol. 2002; 82:260–265.
Article
8. Zhang H, Liao W, Chao W, Chen Q, Zeng H, Wu C, et al. Risk factors for sebaceous gland diseases and their relationship to gastrointestinal dysfunction in Han adolescents. J Dermatol. 2008; 35:555–561.
Article
9. Stokes JH, Pillsbury DM. The effect on the skin of emotional and nervous states Iii. Theoretical and practical consideration of a gastro-intestinal mechanism. Arch Derm Syphilol. 1930; 22:962–993.
Article
10. Lauritano EC, Valenza V, Sparano L, Scarpellini E, Gabrielli M, Cazzato A, et al. Small intestinal bacterial overgrowth and intestinal permeability. Scand J Gastroenterol. 2010; 45:1131–1132.
Article
11. Juhlin L, Michaëlsson G. Fibrin microclot formation in patients with acne. Acta Derm Venereol. 1983; 63:538–540.
12. Terhorst D, Kalali BN, Ollert M, Ring J, Mempel M. The role of toll-like receptors in host defenses and their relevance to dermatologic diseases. Am J Clin Dermatol. 2010; 11:1–10.
Article
13. Deng Y, Wang H, Zhou J, Mou Y, Wang G, Xiong X. Patients with acne vulgaris have a distinct gut microbiota in comparison with healthy controls. Acta Derm Venereol. 2018; 98:783–790.
Article
14. Ou J, Carbonero F, Zoetendal EG, DeLany JP, Wang M, Newton K, et al. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am J Clin Nutr. 2013; 98:111–120.
Article
15. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012; 486:222–227.
Article
16. Obregon-Tito AJ, Tito RY, Metcalf J, Sankaranarayanan K, Clemente JC, Ursell LK, et al. Subsistence strategies in traditional societies distinguish gut microbiomes. Nat Commun. 2015; 6:6505.
Article
17. Gomez A, Petrzelkova KJ, Burns MB, Yeoman CJ, Amato KR, Vlckova K, et al. Gut microbiome of coexisting BaAka pygmies and bantu reflects gradients of traditional subsistence patterns. Cell Rep. 2016; 14:2142–2153.
Article
18. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010; 107:14691–14696.
Article
19. O'Brien SC, Lewis JB, Cunliffe WJ. The Leeds revised acne grading system. J Dermatolog Treat. 1998; 9:215–220.
20. Roghmann MC, Lydecker AD, Hittle L, DeBoy RT, Nowak RG, Johnson JK, et al. Comparison of the microbiota of older adults living in nursing homes and the community. mSphere. 2017; 2:e00210–e00217.
Article
21. Bromberg JS, Hittle L, Xiong Y, Saxena V, Smyth EM, Li L, et al. Gut microbiota-dependent modulation of innate immunity and lymph node remodeling affects cardiac allograft outcomes. JCI Insight. 2018; 3:121045.
Article
22. Fadrosh DW, Ma B, Gajer P, Sengamalay N, Ott S, Brotman RM, et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome. 2014; 2:6.
Article
23. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010; 7:335–336.
Article
24. White JR, Nagarajan N, Pop M. Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol. 2009; 5:e1000352.
Article
25. Clarke KR. Non-parametric multivariate analyses of changes in community structure. Austral Ecol. 1993; 18:117–143.
Article
26. Loveman DE, Noojin RO, Winkler CH Jr. Comparative studies of enteric bacterial flora in acne vulgaris. J Invest Dermatol. 1955; 25:135–137.
27. Chien AL, Tsai J, Leung S, Mongodin EF, Nelson AM, Kang S, et al. Association of systemic antibiotic treatment of acne with skin microbiota characteristics. JAMA Dermatol. 2019; 155:425–434.
Article
28. Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature. 2011; 469:543–547.
Article
29. Romijn AR, Rucklidge JJ, Kuijer RG, Frampton C. A doubleblind, randomized, placebo-controlled trial of Lactobacillus helveticus and Bifidobacterium longum for the symptoms of depression. Aust N Z J Psychiatry. 2017; 51:810–821.
Article
30. Allen AP, Hutch W, Borre YE, Kennedy PJ, Temko A, Boylan G, et al. Bifidobacterium longum 1714 as a translational psychobiotic: modulation of stress, electrophysiology and neurocognition in healthy volunteers. Transl Psychiatry. 2016; 6:e939.
Article
31. Pujato SA, Guglielmotti DM, Martínez-García M, Quiberoni A, Mojica FJM. Leuconostoc mesenteroides and Leuconostoc pseudomesenteroides bacteriophages: Genomics and crossspecies host ranges. Int J Food Microbiol. 2017; 257:128–137.
Article
32. Matsuzaki C, Takagaki C, Tomabechi Y, Forsberg LS, Heiss C, Azadi P, et al. Structural characterization of the immunostimulatory exopolysaccharide produced by Leuconostoc mesenteroides strain NTM048. Carbohydr Res. 2017; 448:95–102.
Article
33. Zununi Vahed S, Barzegari A, Rahbar Saadat Y, Goreyshi A, Omidi Y. Leuconostoc mesenteroides-derived anticancer pharmaceuticals hinder inflammation and cell survival in colon cancer cells by modulating NF-κB/AKT/PTEN/MAPK pathways. Biomed Pharmacother. 2017; 94:1094–1100.
Article
34. Wang YY, Ryu AR, Jin S, Jeon YM, Lee MY. Chlorin e6-mediated photodynamic therapy suppresses P. acnes-induced inflammatory response via NFκB and MAPKs signaling pathway. PLoS One. 2017; 12:e0170599.
Article
35. Chen Q, Koga T, Uchi H, Hara H, Terao H, Moroi Y, et al. Propionibacterium acnes-induced IL-8 production may be mediated by NF-kappaB activation in human monocytes. J Dermatol Sci. 2002; 29:97–103.
Article
36. Wang Y, Kuo S, Shu M, Yu J, Huang S, Dai A, et al. Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris. Appl Microbiol Biotechnol. 2014; 98:411–424.
Article
37. Xia X, Li Z, Liu K, Wu Y, Jiang D, Lai Y. Staphylococcal LTA-induced miR-143 inhibits propionibacterium acnes-mediated inflammatory response in skin. J Invest Dermatol. 2016; 136:621–630.
Article
38. Lie MA, van der, Timmerman MF, Loos BG, van Steenbergen TJ, van der Velden U. Occurrence of Prevotella intermedia and Prevotella nigrescens in relation to gingivitis and gingival health. J Clin Periodontol. 2001; 28:189–193.
Article
39. Smith RN, Mann NJ, Braue A, Mäkeläinen H, Varigos GA. The effect of a high-protein, low glycemic-load diet versus a conventional, high glycemic-load diet on biochemical parameters associated with acne vulgaris: a randomized, investigator-masked, controlled trial. J Am Acad Dermatol. 2007; 57:247–256.
Article
40. Falsen E, Pascual C, Sjödén B, Ohlén M, Collins MD. Phenotypic and phylogenetic characterization of a novel Lactobacillus species from human sources: description of Lactobacillus iners sp. nov. Int J Syst Bacteriol. 1999; 49 Pt 1:217–221.
Article
41. Zhou M, Yu H, Yin X, Sabour PM, Chen W, Gong J. Lactobacillus zeae protects Caenorhabditis elegans from enterotoxigenic Escherichia coli-caused death by inhibiting enterotoxin gene expression of the pathogen. PLoS One. 2014; 9:e89004.
Article
42. Jungersen M, Wind A, Johansen E, Christensen JE, Stuer-Lauridsen B, Eskesen D. The science behind the probiotic strain Bifidobacterium animalis subsp. lactis BB-12(®). Microorganisms. 2014; 2:92–110.
Article
43. Messaoudi S, Manai M, Kergourlay G, Prévost H, Connil N, Chobert JM, et al. Lactobacillus salivarius: bacteriocin and probiotic activity. Food Microbiol. 2013; 36:296–304.
Article
44. O'Shea EF, O'Connor PM, Raftis EJ, O'Toole PW, Stanton C, Cotter PD, et al. Production of multiple bacteriocins from a single locus by gastrointestinal strains of Lactobacillus salivarius. J Bacteriol. 2011; 193:6973–6982.
45. Lee J, Ametani A, Enomoto A, Sato Y, Motoshima H, Ike F, et al. Screening for the immunopotentiating activity of food microorganisms and enhancement of the immune response by bifidobacterium adolescentis M101-4. Biosci Biotechnol Biochem. 1993; 57:2127–2132.
Article
46. Li D, Breiman A, le Pendu J, Uyttendaele M. Anti-viral Effect of Bifidobacterium adolescentis against noroviruses. Front Microbiol. 2016; 7:864.
Article
47. An HM, Lee DK, Kim JR, Lee SW, Cha MK, Lee KO, et al. Antiviral activity of Bifidobacterium adolescentis SPM 0214 against herpes simplex virus type 1. Arch Pharm Res. 2012; 35:1665–1671.
Article
48. Cha MK, Lee DK, An HM, Lee SW, Shin SH, Kwon JH, et al. Antiviral activity of Bifidobacterium adolescentis SPM1005-A on human papillomavirus type 16. BMC Med. 2012; 10:72.
Article
49. Kim MJ, Lee DK, Park JE, Park IH, Seo JG, Ha NJ. Antiviral activity of Bifidobacterium adolescentis SPM1605 against Coxsackievirus B3. Biotechnol Biotechnol Equip. 2014; 28:681–688.
Article
50. Mangin I, Dossou-Yovo F, Lévêque C, Dessoy MV, Sawoo O, Suau A, et al. Oral administration of viable Bifidobacterium pseudolongum strain Patronus modified colonic microbiota and increased mucus layer thickness in rat. FEMS Microbiol Ecol. 2018; 94(11):
Article
51. Pélissier MA, Vasquez N, Balamurugan R, Pereira E, Dossou-Yovo F, Suau A, et al. Metronidazole effects on microbiota and mucus layer thickness in the rat gut. FEMS Microbiol Ecol. 2010; 73:601–610.
Article
52. van der Waaij LA, Harmsen HJ, Madjipour M, Kroese FG, Zwiers M, van Dullemen HM, et al. Bacterial population analysis of human colon and terminal ileum biopsies with 16S rRNA-based fluorescent probes: commensal bacteria live in suspension and have no direct contact with epithelial cells. Inflamm Bowel Dis. 2005; 11:865–871.
Article
53. Mantis NJ, Rol N, Corthésy B. Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol. 2011; 4:603–611.
Article
54. van der Meulen TA, Harmsen H, Bootsma H, Spijkervet F, Kroese F, Vissink A. The microbiome-systemic diseases connection. Oral Dis. 2016; 22:719–734.
Article
55. Mogna L, Del Piano M, Deidda F, Nicola S, Soattini L, Debiaggi R, et al. Assessment of the in vitro inhibitory activity of specific probiotic bacteria against different Escherichia coli strains. J Clin Gastroenterol. 2012; 46:S29–S32.
Article
56. Aloisio I, Santini C, Biavati B, Dinelli G, Cencič A, Chingwaru W, et al. Characterization of Bifidobacterium spp. strains for the treatment of enteric disorders in newborns. Appl Microbiol Biotechnol. 2012; 96:1561–1576.
Article
57. Drago L, De Vecchi E, Gabrieli A, De Grandi R, Toscano M. Immunomodulatory effects of Lactobacillus salivarius LS01 and Bifidobacterium breve BR03, alone and in combination, on peripheral blood mononuclear cells of allergic asthmatics. Allergy Asthma Immunol Res. 2015; 7:409–413.
Article
58. Klemenak M, Dolinšek J, Langerholc T, Di Gioia D, Mičetić-Turk D. Administration of Bifidobacterium breve decreases the production of TNF-α in children with celiac disease. Dig Dis Sci. 2015; 60:3386–3392.
Article
59. Ozkanli S, Karadag AS, Ozlu E, Uzuncakmak TK, Takci Z, Zemheri E, et al. A comparative study of MMP-1, MMP-2, and TNF-α expression in different acne vulgaris lesions. Int J Dermatol. 2016; 55:1402–1407.
Article
60. Jung GW, Tse JE, Guiha I, Rao J. Prospective, randomized, open-label trial comparing the safety, efficacy, and tolerability of an acne treatment regimen with and without a probiotic supplement and minocycline in subjects with mild to moderate acne. J Cutan Med Surg. 2013; 17:114–122.
Article
Full Text Links
  • AD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr