Transl Clin Pharmacol.  2019 Jun;27(2):73-79. 10.12793/tcp.2019.27.2.73.

PKconverter: R package to convert the pharmacokinetic parameters

Affiliations
  • 1Department of Statistics, Ewha Womans University, Seoul 03760, Korea. lee.eunk@ewha.ac.kr

Abstract

Population pharmacokinetic analysis and modeling procedures typically require estimates of both population and individual pharmacokinetic parameters. However, only some of these parameters are contained in models and only parameters in the model can be estimated. In this paper, we introduce a new R package, PKconverter, to calculate pharmacokinetic parameters using the relationships among them. After fitting the model, other parameters can be calculated from the functional relationship among the parameters. PKconverter provides the functions to calculate whole parameters along with a Shiny application for converting the parameters. With this package, it is also possible to calculate the standard errors of the other parameters that are not in the model and estimate individual parameters simultaneously.

Keyword

Pharmacokinetic model; Pharmacokinetic parameter; Population analysis; R; Shiny

MeSH Terms

Drug Packaging
Pharmaceutical Preparations
Models, Biological
Computer Simulation
Software

Figure

  • Figure 1 The relationship among PK parameters? V1, Cl1, and k10 in one compartment model.

  • Figure 2 The relationship among PK parameters? V1, Cl1, and t_alpha in one compartment model.

  • Figure 3 Main GUI of Shiny application for Pharmacokinetic Parameter Converter - Model 1.

  • Figure 4 Main GUI of Shiny application for Pharmacokinetic Parameter Converter - Individual parameter converter.


Reference

1. Chang W, Cheng J, Allaire JJ, Xie Y, McPherson J. Shiny: web application framework for R. R package version 0.11. 2015.
2. DiPiro JT. Concepts in clinical pharmacokinetics. ASHP;2010.
3. Rowland M, Tozer TN, Derendorf H, Hochhaus G. Clinical pharmacokinetics and pharmacodynamics: concepts and applications. Philadelphia, PA: Wolters Kluwer Health/Lippincott William & Wilkins;2011.
4. Gabrielsson J, Weiner D. Pharmacokinetic and pharmacodynamic data analysis: concepts and applications, volume 2. CRC Press;2001.
5. Benet LZ, Zia-Amirhosseini P. Basic principles of pharmacokinetics. Toxicol Pathol. 1995; 23:115–123. DOI: 10.1177/019262339502300203. PMID: 7569664.
Article
6. Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development. CPT Pharmacometrics Syst Pharmacol. 2012; 1:1–14. DOI: 10.1038/psp.2012.4.
Article
7. Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development—part 2: introduction to pharmacokinetic modeling methods. CPT Pharmacometrics Syst Pharmacol. 2013; 2:1–14. DOI: 10.1038/psp.2013.14.
Article
8. Shargel L, Andrew B, Wu-Pong S. Applied biopharmaceutics & pharmacokinetics. Appleton & Lange Stamford;1999.
9. Lehmann EL. Elements of large-sample theory. Springer Science & Business Media;2004.
10. Taboga T. Lectures on probability theory and mathematical statistics. CreateSpace Independent Publishing Platform;2012.
11. Casella G, Berger RL. Statistical inference, volume 2. Pacific Grove, CA: Duxbury;2002.
12. Cho H. PKconverter: shiny application to convert the PK parameters. Ewha Womans University;2018.
Full Text Links
  • TCP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr